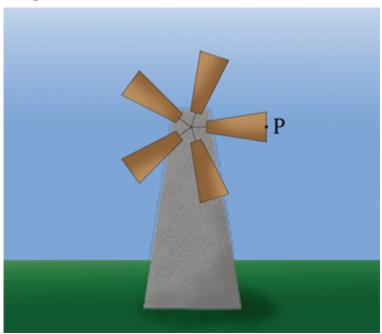
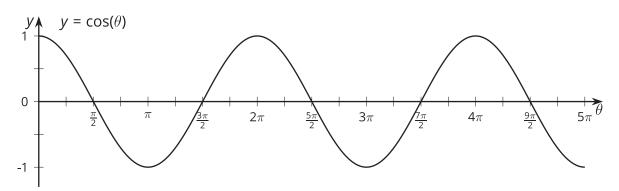

Unit 6 Lesson 10: Beyond 2π

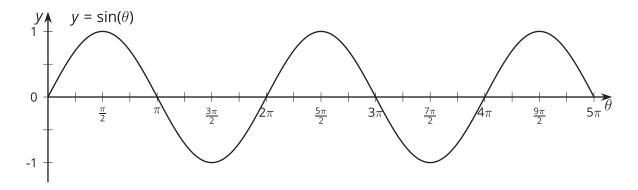
1 All the Way Around (Warm up)

Student Task Statement


Here is a unit circle with a point A marked at (1,0). For each angle of rotation listed here, mark the new location of A on the unit circle. Be prepared to explain your reasoning.

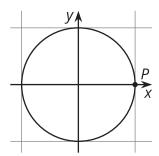
- 1. $B_{i} \frac{\pi}{3}$
- 2. C, $\frac{4\pi}{3}$
- 3. D, $\frac{7\pi}{4}$
- 4. E, $\frac{5\pi}{2}$
- 5. F, $\frac{6\pi}{2}$


2 Going Around and Around and Around


Images for Launch

Student Task Statement

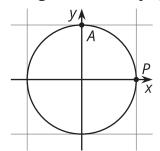
The center of a windmill is (0,0) and it has 5 blades, each 1 meter in length. A point P is at the end of the blade that is pointing directly to the right of the center. Here are graphs showing the horizontal and vertical distances of point P relative to the center of the windmill as the blades rotate counterclockwise.

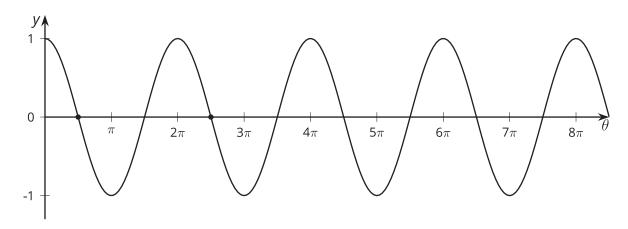


- 1. How many full rotations are shown by the graphs? Explain how you know.
- 2. What do the values of the graphs at $\theta = 3\pi$ mean in this context?
- 3. List some different angles of rotation that bring P to the highest point in its circle of rotation. What do you notice about these angles?
- 4. How many angles show point P at a height of 0.71 meters? Explain or show your reasoning.

3 Back to Where We Started

Student Task Statement


1. The point P on the unit circle has coordinates (1,0). For each angle of rotation, state the number of rotations defined by the angle and then identify the coordinates of P after the given rotation.



rotation in radians	number of rotations	horizontal coordinate	vertical coordinate
$\frac{3\pi}{2}$	0.75	0	-1
$\frac{25\pi}{12}$			
$\frac{5\pi}{2}$			
$\frac{7\pi}{3}$			
$\frac{49\pi}{12}$			
5π			

2. In general, if θ is greater than 2π radians, explain how you can use the unit circle to make sense of $\cos(\theta)$ and $\sin(\theta)$.

Images for Activity Synthesis

