

# **Lesson 5: Comparing Speeds and Prices**

Let's compare some speeds and some prices.

# **5.1: Closest Quotient**

Is the value of each expression closer to  $\frac{1}{2}$ , 1, or  $1\frac{1}{2}$ ?

- $1.20 \div 18$
- $2.9 \div 20$
- $3.7 \div 5$

## 5.2: More Treadmills

Some students did treadmill workouts, each one running at a constant speed. Answer the questions about their workouts. Explain or show your reasoning.

- Tyler ran 4,200 meters in 30 minutes.
- Kiran ran 6,300 meters in  $\frac{1}{2}$  hour.
- Mai ran 6.3 kilometers in 45 minutes.
- 1. What is the same about the workouts done by:
  - a. Tyler and Kiran?
  - b. Kiran and Mai?
  - c. Mai and Tyler?
- 2. At what rate did each of them run?



3. How far did Mai run in her first 30 minutes on the treadmill?

#### Are you ready for more?

Tyler and Kiran each started running at a constant speed at the same time. Tyler ran 4,200 meters in 30 minutes and Kiran ran 6,300 meters in  $\frac{1}{2}$  hour. Eventually, Kiran ran 1 kilometer more than Tyler. How much time did it take for this to happen?

### 5.3: The Best Deal on Beans

Four different stores posted ads about special sales on 15-oz cans of baked beans.

1. Which store is offering the best deal? Explain your reasoning.









2. The last store listed is also selling 28-oz cans of baked beans for \$1.40 each. How does that price compare to the other prices?



#### **Lesson 5 Summary**

Diego ran 3 kilometers in 20 minutes. Andre ran 2,550 meters in 17 minutes. Who ran faster? Since neither their distances nor their times are the same, we have two possible strategies:

- Find the time each person took to travel the *same distance*. The person who traveled that distance in less time is faster.
- Find the distance each person traveled in the *same time*. The person who traveled a longer distance in the same amount of time is faster.

It is often helpful to compare distances traveled in *1 unit* of time (1 minute, for example), which means finding the speed such as meters per minute.

Let's compare Diego and Andre's speeds in meters per minute.

| distance<br>(meters) | time<br>(minutes) |
|----------------------|-------------------|
| 3,000                | 20                |
| 1,500                | 10                |
| 150                  | 1                 |

| distance<br>(meters) | time<br>(minutes) |
|----------------------|-------------------|
| 2,550                | 17                |
| 150                  | 1                 |

Both Diego and Andre ran 150 meters per minute, so they ran at the same speed.

Finding ratios that tell us how much of quantity A per 1 unit of quantity B is an efficient way to compare rates in different situations. Here are some familiar examples:

- Car speeds in *miles per hour*.
- Fruit and vegetable prices in *dollars per pound*.