

It's All on the Line

Let's work with both parallel and perpendicular lines.

7.1 Parallel and Perpendicular

The image shows line n .

1. Write an equation for the line that is perpendicular to n and whose y -intercept is $(0, 5)$. Graph this line.
2. Write an equation for the line that is parallel to n and that passes through the point $(3, 1)$. Graph this line.

7.2 Information Gap: Lines

Your teacher will give you either a problem card or a data card. Do not show or read your card to your partner.

If your teacher gives you the problem card:

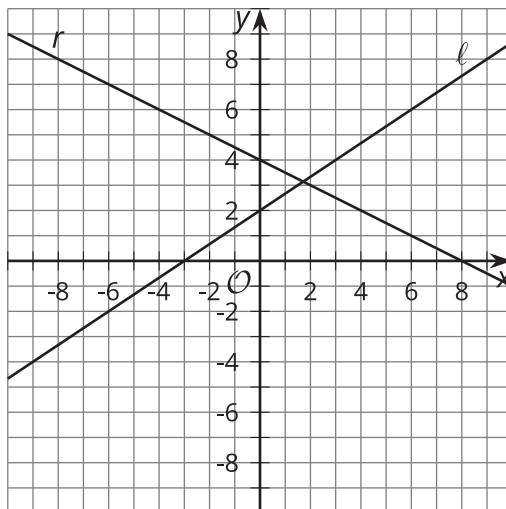
1. Silently read your card and think about what information you need to answer the question.

If your teacher gives you the data card:

1. Silently read your card. Wait for your partner to ask for information.
2. Before telling your partner any

- Ask your partner for the specific information that you need. "Can you tell me ____?"
- Explain to your partner how you are using the information to solve the problem. "I need to know ____ because ____"

Continue to ask questions until you have enough information to solve the problem.


- Once you have enough information, share the problem card with your partner, and solve the problem independently.
- Read the data card, and discuss your reasoning.

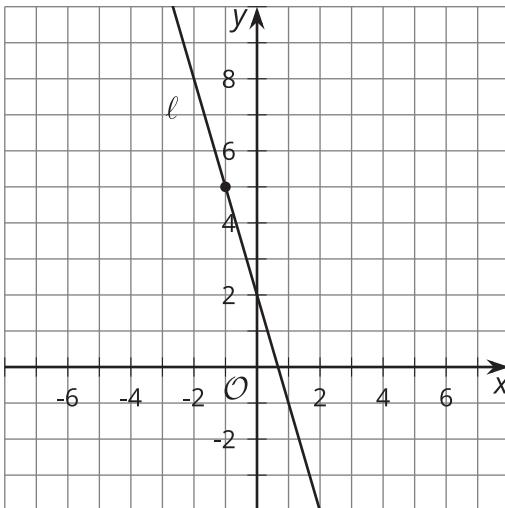
information, ask, "Why do you need to know ____?"

- Listen to your partner's reasoning, and ask clarifying questions. Give only information that is on your card. Do not figure out anything for your partner!

These steps may be repeated.

- Once your partner has enough information to solve the problem, read the problem card, and solve the problem independently.
- Share the data card, and discuss your reasoning.

7.3 Three Lines


- Line ℓ is represented by the equation $y = \frac{2}{3}x + 3$. Write an equation of the line perpendicular to ℓ , passing through $(-6, 4)$. Call this line p .
- Write an equation of the line perpendicular to p , passing through $(3, -2)$. Call this line n .
- What do you notice about lines ℓ and n ? Does this always happen? Show or explain your answer.

💡 Are you ready for more?

Prove that the line $Ax + By = C$ is always perpendicular to the line that passes through (A, B) and the origin.

👤 Lesson 7 Summary

We can use the concepts of parallel and perpendicular lines to write equations of lines. The image shows line ℓ .

Suppose n is the image of ℓ when it is rotated 90 degrees using $(-1, 5)$ as a center. What is an equation of line n ?

The point $(-1, 5)$ is on line ℓ . The center of rotation does not move when a figure is rotated, so $(-1, 5)$ will also be on the image, line n . Because line ℓ was rotated 90 degrees, lines ℓ and n are perpendicular. Their slopes must be opposite reciprocals. The slope of line ℓ is -1 , so the slope of n is 1 . Now substitute the slope 1 and the point $(-1, 5)$ into point-slope form to get $y - 5 = \frac{1}{3}(x - (-1))$.