

Lesson 2 Practice Problems

1. How many small squares are in Step 10?

- A. 10
- B. 11
- C. 90
- D. 110
- 2. Here are 2 patterns of dots.

Pattern A

Pattern B

- a. How many dots will there be in Step 4 of each pattern?
- b. Which pattern shows a quadratic relationship between the step number and the number of dots? Explain how you know.

- 3. Here are descriptions for how two dot patterns are growing.
 - Pattern A: Step 2 has 10 dots. It grows by 3 dots at each additional step.
 - $^{\circ}$ Pattern B: The total number of dots can be expressed by $2n^2 + 1$, where n is the step number.

For each pattern, draw a diagram of Step 0 to Step 3.

4. Each expression represents the total number of dots in a pattern where n represents the step number.

Select **all** the expressions that represent a quadratic relationship between the step number and the total number of dots. (If you get stuck, consider sketching the first few steps of each pattern as described by the expression.)

- A. n^2
- B. 2*n*
- C. *n n*
- D. n + n
- E. n + 2
- F. $n \div 2$

5. The function C gives the percentage of homes using only cell phone service x years after 2004. Explain the meaning of each statement.

a.
$$C(10) = 35$$

b.
$$C(x) = 10$$

c. How is
$$C(10)$$
 different from $C(x) = 10$?

(From Unit 4, Lesson 3.)

- 6. Here are some lengths, widths, and areas of a garden whose perimeter is 40 feet.
 - a. Complete the table with the missing measurements.
 - b. What lengths and widths do you think will produce the largest possible area? Explain how you know.

length (ft)	width (ft)	area (sq ft)
4	16	64
8	12	
10		
12		96
14		
16		64

(From Unit 6, Lesson 1.)

- 7. A bacteria population is 10,000 when it is first measured and then doubles each day.
 - a. Use this information to complete the table.
 - b. Which is the first day, after the population was originally measured, that the bacteria population is more than 1,000,000?
 - c. Write an equation relating p, the bacteria population, to d, the number of days since it was first measured.

d, time (days)	p, population (thousands)
0	
1	
2	
5	
10	
d	

(From Unit 5, Lesson 3.)

8. Graph the solutions to the inequality $7x - 3y \ge 21$.

(From Unit 2, Lesson 21.)