0

Using the Sum

Let's calculate some totals.

15.1

Some Interesting Sums

Recall that for any geometric sequence starting at a with a common ratio r, the sum s of the first n terms is given by $s=a\frac{1-r^n}{1-r}$. Find the approximate sum of the first 50 terms of each sequence:

1.
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, ...

2.
$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

15.2

That's a Lot of Houses

In 2010, about 886 thousand homes were sold in the United Kingdom. For the next 3 years, the number of homes sold increased by about 7% annually. Assuming the sales trend continues,

2. What information does the value of the expression $886 \frac{(1-1.07^{11})}{(1-1.07)}$ tell us?

3. Predict the total number of house sales from 2010 to 2016. Explain your reasoning.

•

Are you ready for more?

Han and Lin each have a method to calculate $3^5+3^6+\cdots+3^n$. Han says this is $3^5\left(1+3+3^2+\cdots+3^{n-5}\right)$ and concludes that $3^5+\cdots+3^n=3^5\frac{3^{n-4}-1}{3-1}$. Lin says that this is a difference of terms in two geometric sequences and can be written as $\frac{3^{n+1}-1}{3-1}-\frac{3^5-1}{3-1}$. Do you agree with either Han or Lin? Explain your reasoning.

15.3

Back to Funding the Future

Let's say you open a savings account with an interest rate of 5% compounded annually (once per year) and that you plan on contributing the same amount to it at the start of every year.

- 1. Predict how much you need to put into the account at the start of each year to have over \$100,000 in it when you turn 70.
- 2. Calculate how much the account would have after the deposit at the start of the 50th year if the amount invested each year were:
 - a. \$100
 - b. \$500
 - c. \$1,000
 - d. \$2,000
- 3. Say you decide to invest \$1,000 into the account at the start of each year at the same interest rate. How many years until the account reaches \$100,000? How does the amount you invest into the account compare to the amount of interest earned by the account?

Lesson 15 Summary

Let's say you plan to invest \$200 at the start of each year into an account that averages 3% interest compounded annually at the end of the year. How many years until the account has more than \$10,000? \$20,000?

We know that, at the end of year 1, the amount in the account is \$206. At the end of year 2, the amount in the account is \$418.18 since $200(1.03)^2 + 200(1.03) = 418.18$. At the start of year 30, for example, that original \$200 has been compounded a total of 29 times, while the last \$200 deposited has been compounded 0 times. Figuring out how much is in the account 30 years after the first deposit means adding up $200(1.03)^{29} + 200(1.03)^{28} + \ldots + 200(1.03) + 200$. We can use the formula for the sum of a geometric sequence, $s = a\frac{(1-r^n)}{(1-r)}$, to find the total amount in the account. The sequence starts at a = 200 and increases at a rate of r = 1.03 each year. After n = 1.03 years, the total n = 1.03 in the account is n = 1.03. Now we have a simpler expression to evaluate for different n = 1.03 values. It turns out that when n = 1.03 the account has about \$10,301 in it, and when n = 1.03 in it, about \$20,682 in it.

