

Lesson 8: Representing Functions

• Let's represent functions.

8.1: The Secret Club

In a secret club, everyone is known by the month they were born. So Diego would be called "January" and Tyler would be called "August."

- 1. What would be the name of some people in your class in the secret club?
- 2. Why might club meetings get kind of confusing?
- 3. Can you think of a better system for assigning club members new names?

8.2: Examples of Functions

- 1. For each question, answer yes or no.
 - a. It is 50 miles to Tucson. Can we figure out how many kilometers it is to Tucson?
 - b. It is 200 kilometers to Saskatoon. Can we figure out how many miles it is to Saskatoon?
 - c. A number is -3. Can we figure out its absolute value?
 - d. The absolute value of a number is 8. Can we figure out the number?
 - e. A circle has a diameter of 8 cm. Can we figure out its circumference?
 - f. A circle has a circumference of 10π cm. Can we figure out its diameter?
 - g. A square has a side length of 6 units. Can we figure out its perimeter?
 - h. A rectangle has a perimeter of 30 meters. Can we figure out its width?
- 2. Which of the relationships are functions?

3. For each function definition in the table, match it with the situation, write a statement explaining which variable depends on which, and write an example using function notation. An example is done for you.

function definition	situation	statement	example
m(x) = 0.62x	You know kilometers and want to find miles.	Distance in miles depends on distance in kilometers, or, distance in miles is a function of distance in kilometers.	m(100) = 62
$f(x) = x \cdot \pi$			
g(x) = 1.6x			
h(x) = 4x			
k(x) = x			

8.3: Matching Representations

Your teacher will give you a set of representations. Sort them so that in each group there is a table, graph, equation, and example that all represent the same function.