

Polynomial Division (Part 2)

Let's learn a different way to divide polynomials.

13.1

Notice and Wonder: Different Divisions

What do you notice? What do you wonder?

$$11 \overline{)2\ 7\ 7\ 2}$$

2 2
5

$$11 \overline{)2\ 7\ 7\ 2}$$

2 2
5 7
5 5
2

$$11 \overline{)2\ 7\ 7\ 2}$$

2 2
5 7
5 5
2 2
2 2
0

$$\begin{array}{r} 2x^2 \\ x + 1 \overline{)2x^3 + 7x^2 + 7x + 2} \\ \underline{-2x^3 - 2x^2} \\ 5x^2 + 7x \end{array}$$

13.2

Polynomial Long Division

- Diego used the long division shown here to figure out that $6x^2 - 7x - 5 = (2x + 1)(3x - 5)$. Show what it would look like if he had used a diagram.

$$\begin{array}{r} 3x - 5 \\ 2x + 1 \overline{)6x^2 - 7x - 5} \\ \underline{-6x^2 - 3x} \\ -10x - 5 \\ \underline{10x + 5} \\ 0 \end{array}$$

2x	$6x^2$	
1		

Pause here for a whole-class discussion.

2. $(x - 2)$ is a factor of $2x^3 - 7x^2 + x + 10$, which means there is some other factor A where $2x^3 - 7x^2 + x + 10 = (x - 2)(A)$. Finish the division started here to find the value of A .

$$\begin{array}{r} 2x^2 \\ x - 2 \overline{)2x^3 - 7x^2 + x + 10} \\ -2x^3 + 4x^2 \end{array}$$

3. Jada used the diagram shown here to figure out that $2x^3 + 13x^2 + 16x + 5 = (2x + 1)(x^2 + 6x + 5)$. Show what it would look like if she had used long division.

	x^2	$6x$	5
$2x$	$2x^3$	$12x^2$	$10x$
1	x^2	$6x$	5

$$2x + 1 \overline{)2x^3 + 13x^2 + 16x + 5}$$

Are you ready for more?

1. What is $(x^4 - 1) \div (x - 1)$?

2. Use your response to predict what $(x^7 - 1) \div (x - 1)$ is, and then use division to check your prediction.

13.3 More Long Division

Here are some polynomial functions with known factors. Rewrite each polynomial as a product of linear factors using long division.

1. $A(x) = x^3 - 7x^2 - 16x + 112, (x - 7)$

$$\begin{array}{r} x^2 \\ x - 7 \overline{)x^3 - 7x^2 - 16x + 112} \\ -x^3 + 7x^2 \\ \hline \end{array}$$

2. $C(x) = x^3 - 3x^2 - 13x + 15, (x + 3)$

13.4 Missing Numbers

Here are pairs of equivalent expressions, one in standard form and the other in factored form. Find the missing numbers.

1. $x^2 + 9x + 14$ and $(x + 2)(x + \square)$

2. $x^2 - 9x + 20$ and $(x - \square)(x - \square)$

3. $2x^2 + 2x - 24$ and $2(x + \square)(x - 3)$

4. $\square x^3 + 11x^2 - 17x + 6$ and $(-x + 3)(2x - 1)(x - 2)$

5. $6x^3 + 2x^2 - 16x + 8$ and $(x - 1)(2x + 4)(\square x - 2)$

6. $2x^3 + 7x^2 - 7x - 12$ and $(2x - 3)(x + \square)(x + \square)$

7. $x^3 + 6x^2 + \square x - 10$ and $(x + 2)(x - 1)(x + \square)$

Lesson 13 Summary

In earlier grades, we learned that one way to divide numbers, like 1,573 divided by 11, is by using long division.

$$11 \overline{)1573}$$

$$\begin{array}{r} 11 \\ \hline 4 \end{array}$$

$$11 \overline{)1573}$$

$$\begin{array}{r} 11 \\ \hline 47 \\ 44 \\ \hline 3 \end{array}$$

$$11 \overline{)1573}$$

$$\begin{array}{r} 11 \\ \hline 47 \\ 44 \\ \hline 33 \\ 33 \\ \hline 0 \end{array}$$

Here the division has been completed in stages, focusing on the highest power of 10 (1,000) in the dividend 1,573, and working down. This long division shows that $1,573 = (11)(143)$.

Similar to integers, we can also use long division on polynomials. Instead of focusing on powers of 10, in polynomial long division we focus on powers of x . Just as we started with the highest power or 10, we start with the highest power of x , the leading term, and work down to the constant term. For example, here is $x^3 + 5x^2 + 7x + 3$ divided by $x + 1$ completed in three stages. Notice how terms of the same degree are in the same columns.

$$\begin{array}{r} x^2 \\ x+1 \overline{)x^3 + 5x^2 + 7x + 3} \\ \underline{-x^3 - x^2} \\ 4x^2 + 7x \end{array}$$

$$\begin{array}{r} x^2 + 4x \\ x+1 \overline{)x^3 + 5x^2 + 7x + 3} \\ \underline{-x^3 - x^2} \\ 4x^2 + 7x \\ \underline{-4x^2 - 4x} \\ 3x + 3 \end{array}$$

$$\begin{array}{r} x^2 + 4x + 3 \\ x+1 \overline{)x^3 + 5x^2 + 7x + 3} \\ \underline{-x^3 - x^2} \\ 4x^2 + 7x \\ \underline{-4x^2 - 4x} \\ 3x + 3 \end{array}$$

At each stage, the focus is only on the term with the largest exponent that's left. At the conclusion, we can see that $x^3 + 5x^2 + 7x + 3 = (x + 1)(x^2 + 4x + 3)$.