Unit 1 Lesson 10: Situations and Sequence Types

1 Describing Growth (Warm up)

Student Task Statement

- 1. Here is a geometric sequence. What is the growth factor? 16, 24, 36, 54, 81
- 2. One way to describe its growth is to say it's growing by _____% each time. What number goes in the blank for the sequence 16, 24, 36, 54, 81? Be prepared to explain your reasoning.

2 Finding Population Patterns

Student Task Statement

The table shows two animal populations growing over time.

years since 1990	Population A	Population <i>B</i>
0	23,000	3,125
1	29,000	3,750
2	35,000	4,500
3	41,000	5,400
4	47,000	6,480

- 1. Are the sequences represented by Population A and Population B arithmetic or geometric? Explain how you know.
- 2. Write an equation to define Population A.
- 3. Write an equation to define Population B.
- 4. Does Population B ever overtake Population A? If so, when? Explain how you know.

3 Finding Square Patterns

Student Task Statement

Define the sequence W so that W(n) is the number of white squares in Step n, and define the sequence B so that B(n) is the number of black squares in Step n.

- 1. Are the sequences W and B arithmetic, geometric, or neither? Explain how you know.
- 2. Write an equation for sequence W.
- 3. Write an equation for sequence B.
- 4. Is the number of black squares ever larger than the number of white squares? Explain how you know.