Unit 5 Lesson 7: Expressing Transformations of Functions Algebraically

1 Describing Translations (Warm up)

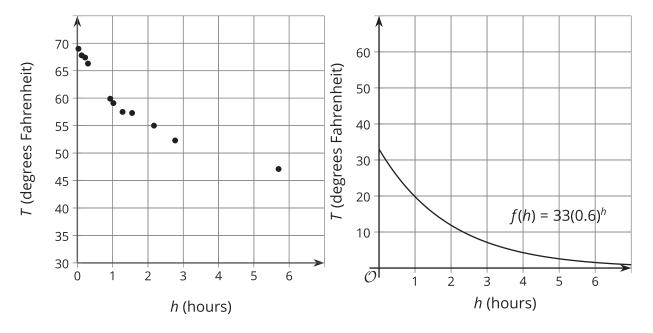
Student Task Statement

Let $g(x) = \sqrt{x}$. Complete the table. Be prepared to explain your reasoning.

words (the graph of $y = g(x)$ is)	function notation	expression
translated left 5 units	g(x+5)	
translated left 5 units and down 3 units		$\sqrt{x+5}-3$
	g(-x)	$\sqrt{-x}$
translated left 5 units, then down 3 units, then reflected across the <i>y</i> -axis		

2 Translating Vertex Form

Student Task Statement


Let f be the function given by $f(x) = x^2$.

- 1. Write an equation for the function g whose graph is the graph of f translated 3 units left and up 5 units.
- 2. What is the vertex of the graph of *g*? Explain how you know.
- 3. Write an equation for a quadratic function h whose graph has a vertex at (1.5, 2.6).
- 4. Write an equation for a quadratic function k whose graph opens downward and has a vertex at (3.2, -4.7).

3 An Even Better Fit

Student Task Statement

In an earlier lesson, we looked at the temperature T, in degrees Fahrenheit, of a bottle of soda water left outside for h hours. Let's model this data with a function. This time, we will start with the function $f(h) = 33(0.6)^h$. This graph has a shape that fits the data well.

- 1. Describe a translation of this graph that fits the data.
- 2. Write an equation defining a function *g* that models the data.
- 3. What does your function tell you about the temperature outside?