

Ways to Divide Greater Numbers

Let's make sense of representations of division.

True or False: Ones, Tens, Twenties

Decide if each statement is true or false. Be prepared to explain your reasoning.

•
$$4 \times 10 = 40 \times 1$$

•
$$4 \times 20 = 4 \times 2 \times 10$$

•
$$8 \times 20 = 8 \times 2 \times 1$$

•
$$8 \times 20 = 16 \times 10$$

Activity 1

Divide with Base-Ten Blocks

1. Use base-ten blocks to represent each expression. Then, find its value.

a.
$$55 \div 5$$

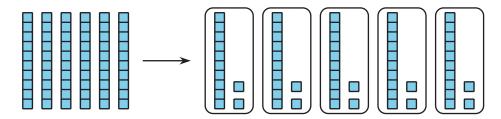
b.
$$45 \div 3$$

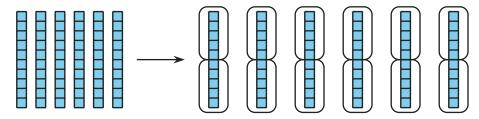
2. Find the value of each expression. Use base-ten blocks if you find them helpful.

a.
$$63 \div 3$$

b.
$$84 \div 7$$

c.
$$100 \div 5$$




Different Ways to Show Division

Jada and Han used base-ten blocks to represent $60 \div 5$.

Here is Jada's work:

Here's Han's work:

- 1. Make sense of Jada's and Han's work.
 - a. What did they do differently?

b. Where do you see the value of $60 \div 5$ in each person's work?

- 2. How would you use base-ten blocks to represent these expressions and find their value? Be prepared to explain your reasoning.
 - a. $64 \div 4$: Would you make 4 groups or groups of 4?

b. $72 \div 6$: Would you make 6 groups or groups of 6?

c. $75 \div 15$: Would you make 15 groups or groups of 15?

