
Comparing Positive and Negative Numbers

Let's compare numbers on the number line.

2.1

A Point on the Number Line

Which of the following numbers could be represented by point *B*?

2.45

 $\frac{2}{5}$ $\frac{5}{2}$ $\frac{35}{10}$

2.11

-2.5

2.2 Comparing Temperatures

Here are the low temperatures, in degrees Celsius, for a week in Anchorage, Alaska.

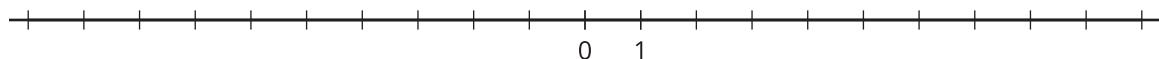
day	Mon	Tue	Wed	Thurs	Fri	Sat	Sun
temperature	5	-1	-5.5	-2	3	4	0

1. Plot the temperatures on a number line.
2. Which day of the week had the lowest low temperature?
3. On a winter day, the low temperature in Anchorage, Alaska, was -21 degrees Celsius, and the low temperature in Minneapolis, Minnesota, was -14 degrees Celsius.

Jada said, "I know that 14 is less than 21, so -14 is also less than -21. This means that it was colder in Minneapolis than in Anchorage."

Do you agree? Explain your reasoning.

💡 Are you ready for more?


Another temperature scale frequently used in science is the *Kelvin scale*. In this scale, 0 K is the lowest possible temperature of anything in the universe, and it is -273.15 degrees in the Celsius scale. Each 1 K is the same as 1°C, so 10 K is the same as -263.15°C.

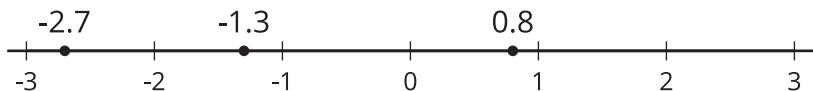
1. Water boils at 100°C. What is this temperature in K?
2. Ammonia boils at -35.5°C. What is the boiling point of ammonia in K?
3. Explain why only positive numbers (and 0) are needed to record temperature in K.

2.3

Rational Numbers on a Number Line

1. Plot the numbers -2, 4, -7, and 10 on the number line. Label each point with its numeric value.

2. Decide whether each inequality statement is true or false. Be prepared to explain your reasoning.
 - a. $-2 < 4$
 - b. $-2 < -7$
 - c. $4 > -7$
 - d. $-7 > 10$



Lesson 2 Summary

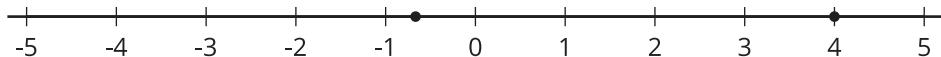
The symbol “ $>$ ” means “is greater than.” The symbol “ $<$ ” means “is less than.”

A statement that uses these symbols to compare two values or expressions is called an **inequality**.

The phrases “greater than” and “less than” can be used to compare numbers on the number line. For example, the numbers -2.7 , 0.8 , and -1.3 , are shown on the number line.

Because -2.7 is to the left of -1.3 , we say that -2.7 is less than -1.3 . We write:

$$-2.7 < -1.3$$


In general, any number that is to the left of a number n is less than n .

We can see that -1.3 is greater than -2.7 because -1.3 is to the right of -2.7 . We write:

$$-1.3 > -2.7$$

In general, any number that is to the right of a number n is greater than n .

Here is another labeled number line with some **rational numbers**. A rational number is a number that can be written as a positive or negative fraction or zero.

The number 4 is positive, and its location is 4 units to the right of 0 on the number line. The number 4 can be written as $\frac{4}{1}$ or $\frac{16}{4}$ or any other equivalent fraction.

The number $-\frac{2}{3}$ is negative, and its location is $\frac{2}{3}$ units to the left of 0 on the number line.

