

Lesson 3 Practice Problems

1. Here are the first two terms of some different arithmetic sequences:

a. -2, 4 b. 11, 111 c. 5, 7.5 d. 5, -4

What are the next three terms of each sequence?

- 2. For each sequence, decide whether it could be arithmetic, geometric, or neither.
 - a. 200, 40, 8, ...
 b. 2, 4, 16, ...
 c. 10, 20, 30, ...
 d. 100, 20, 4, ...
 e. 6, 12, 18, ...
- 3. Complete each arithmetic sequence with its missing terms, then state the rate of change for each sequence.
 - a. -3, -2, ___, ___, 1 b. ___, 13, 25, ___, ___ c. 1, .25, ___, -1.25, ___ d. 92, ___, ___, 80

4. A sequence starts with the terms 1 and 10.

- a. Find the next two terms if it is arithmetic: 1, 10, ____, ____.
- b. Find the next two terms if it is geometric: 1, 10, ___, ___.
- c. Find two possible next terms if it is neither arithmetic nor geometric: 1, 10, ____,

_.

- 5. Complete each geometric sequence with the missing terms. Then find the growth factor for each.
 - a. ___, 5, 25, ___, 625 b. -1, ___, -36, 216, ___ c. 10, 5, ___, ___, 0.625 d. ___, ___, 36, -108, ___ e. ___, 12, 18, 27, ___

(From Unit 1, Lesson 2.)

- 6. The first term of a sequence is 4.
 - a. Choose a growth factor and list the next 3 terms of a geometric sequence.
 - b. Choose a *different* growth factor and list the next 3 terms of a geometric sequence.

(From Unit 1, Lesson 2.)

- 7. Here is a rule that can be used to build a sequence of numbers once a starting number is chosen: Each number is two times three less than the previous number.
 - a. Starting with the number 0, build a sequence of 5 numbers.
 - b. Starting with the number 3, build a sequence of 5 numbers.
 - c. Can you choose a starting point so that the first 5 numbers in your sequence are all positive? Explain your reasoning.

(From Unit 1, Lesson 1.)