Lesson 14: Completing the Square (Part 3)

• Let's complete the square for some more complicated expressions.

14.1: Perfect Squares in Two Forms

Elena says, " $(x + 3)^2$ can be expanded into $x^2 + 6x + 9$. Likewise, $(2x + 3)^2$ can be expanded into $4x^2 + 6x + 9$."

Find an error in Elena's statement and correct the error. Show your reasoning.

14.2: Perfect in A Different Way

1. Write each expression in standard form:

a.
$$(4x + 1)^2$$

b. $(5x - 2)^2$
c. $(\frac{1}{2}x + 7)^2$
d. $(3x + n)^2$
e. $(kx + m)^2$

- 2. Decide if each expression is a perfect square. If so, write an equivalent expression of the form $(kx + m)^2$. If not, suggest one change to turn it into a perfect square.
 - a. $4x^2 + 12x + 9$ b. $4x^2 + 8x + 25$

14.3: When All the Stars Align

1. Find the value of *c* to make each expression in the left column a perfect square in standard form. Then, write an equivalent expression in the form of squared factors. In the last row, write your own pair of equivalent expressions.

standard form $(ax^2 + bx + c)$	squared factors $(kx + m)^2$
$100x^2 + 80x + c$	
$36x^2 - 60x + c$	
$25x^2 + 40x + c$	
$0.25x^2 - 14x + c$	

2. Solve each equation by completing the square:

$$25x^2 + 40x = -12 \qquad \qquad 36x^2 - 60x + 10 = -6$$

14.4: Putting Stars into Alignment

Here are three methods for solving $3x^2 + 8x + 5 = 0$.

Method 1:

Try to make sense of each method.

 $3x^{2} + 8x + 5 = 0$ (3x + 5)(x + 1) = 0 $x = -\frac{5}{3} \text{ or } x = -1$ Method 2:

Method 3:

$3x^2 + 8x + 5 = 0$	$3x^2 + 8x + 5 = 0$
$9x^2 + 24x + 15 = 0$	$9x^2 + 24x + 15 = 0$
$(3x)^2 + 8(3x) + 15 = 0$	$9x^2 + 24x + 16 = 1$
$U^2 + 8U + 15 = 0$	$(3x+4)^2 = 1$
(U+5)(U+3) = 0	3x + 4 = 1 or $3x + 4 = -1$
U = -5 or $U = -33x = -5$ or $3x = -3$	$x = -1$ or $x = -\frac{5}{3}$
$x = -\frac{5}{3}$ or $x = -1$	

Once you understand the methods, use each method at least one time to solve these equations.

1.
$$5x^2 + 17x + 6 = 0$$

2. $6x^2 + 19x = -10$

 $3.8x^2 - 33x + 4 = 0$

4.
$$8x^2 - 26x = -21$$

5.
$$10x^2 + 37x = 36$$

6.
$$12x^2 + 20x - 77 = 0$$

Are you ready for more?

Find the solutions to $3x^2 - 6x + \frac{9}{4} = 0$. Explain your reasoning.

Lesson 14 Summary

In earlier lessons, we worked with perfect squares such as $(x + 1)^2$ and (x - 5)(x - 5). We learned that their equivalent expressions in standard form follow a predictable pattern:

- In general, $(x + m)^2$ can be written as $x^2 + 2mx + m^2$.
- If a quadratic expression of the form $ax^2 + bx + c$ is a perfect square, and the value of *a* is 1, then the value of *b* is 2*m*, and the value of *c* is m^2 for some value of *m*.

In this lesson, the variable in the factors being squared had a coefficient other than 1, for example $(3x + 1)^2$ and (2x - 5)(2x - 5). Their equivalent expression in standard form also followed the same pattern we saw earlier.

squared factors	standard form	
$(3x+1)^2$	$(3x)^2 + 2(3x)(1) + 1^2$ or $9x^2 + 6x + 1$	
$(2x-5)^2$	$(2x)^2 + 2(2x)(-5) + (-5)^2$ or $4x^2 - 20x + 25$	

In general, $(kx + m)^2$ can be written as:

$$(kx)^2 + 2(kx)(m) + m^2$$
 or $k^2x^2 + 2kmx + m^2$

If a quadratic expression is of the form $ax^2 + bx + c$, then:

- the value of a is k^2
- the value of *b* is 2*km*
- the value of c is m^2

We can use this pattern to help us complete the square and solve equations when the squared term x^2 has a coefficient other than 1—for example: $16x^2 + 40x = 11$.

What constant term c can we add to make the expression on the left of the equal sign a perfect square? And how do we write this expression as squared factors?

- 16 is 4^2 , so the squared factors could be $(4x + m)^2$.
- 40 is equal to 2(4m), so 2(4m) = 40 or 8m = 40. This means that m = 5.
- If c is m^2 , then $c = 5^2$ or c = 25.

• So the expression $16x^2 + 40x + 25$ is a perfect square and is equivalent to $(4x + 5)^2$.

Let's solve the equation $16x^2 + 40x = 11$ by completing the square!

$$16x^{2} + 40x = 11$$

$$16x^{2} + 40x + 25 = 11 + 25$$

$$(4x + 5)^{2} = 36$$

$$4x + 5 = 6 \quad \text{or} \quad 4x + 5 = -6$$

$$4x = 1 \quad \text{or} \quad 4x = -11$$

$$x = \frac{1}{4} \quad \text{or} \quad x = -\frac{11}{4}$$

•