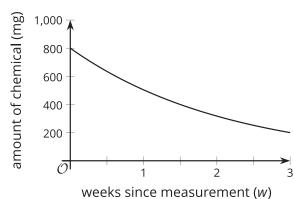


Lesson 10 Practice Problems


- 1. a. Use the base-2 log table (printed in the lesson) to approximate the value of each exponential expression.
 - i. 2^5
 - ii. $2^{3.7}$
 - iii. $2^{4.25}$
 - b. Use the base-2 log table to find or approximate the value of each logarithm.
 - i. $\log_2 4$
 - ii. log_2 17
 - iii. log₂ 35
- 2. Here is a logarithmic expression: log_2 64.
 - a. How do we say the expression in words?
 - b. Explain in your own words what the expression means.
 - c. What is the value of this expression?
- 3. a. What is $\log_{10}(100)$? What about $\log_{100}(10)$?
 - b. What is $log_2(4)$? What about $log_4(2)$?
 - c. Express b as a power of a if $a^2 = b$.

4. In order for an investment, which is increasing in value exponentially, to increase by a factor of 5 in 20 years, about what percent does it need to grow each year? Explain how you know.

(From Unit 4, Lesson 4.)

5. Here is the graph of the amount of a chemical remaining after it was first measured. The chemical decays exponentially.

What is the approximate half-life of the chemical? Explain how you know.

(From Unit 4, Lesson 7.)

6. Find each missing exponent.

a.
$$10^? = 100$$

b.
$$10^? = 0.01$$

c.
$$\left(\frac{1}{10}\right)^? = \frac{1}{1,000}$$

d.
$$2^? = \frac{1}{2}$$

e.
$$(\frac{1}{2})^? = 2$$

(From Unit 4, Lesson 8.)

7. Explain why $\log_{10} 1 = 0$.

(From Unit 4, Lesson 9.)

8. How are the two equations $10^2=100$ and $\log_{10}(100)=2$ related?

(From Unit 4, Lesson 9.)