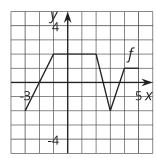
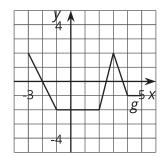
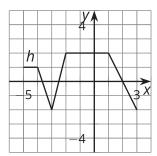
8

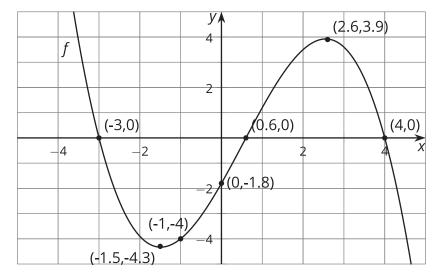

Reflecting Functions


Let's reflect some graphs.



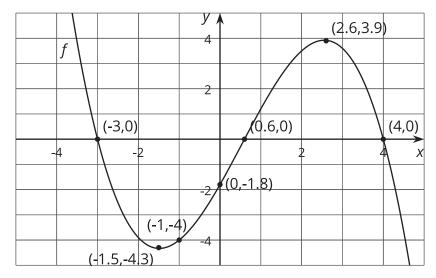
Notice and Wonder: Reflections

What do you notice? What do you wonder?



4.2 Reflecting Across

Here is the graph of function f and a table of values.


X	f(x)	g(x) = -f(x)
-3	0	
-1.5	-4.3	
-1	-4	
0	-1.8	
0.6	0	
2.6	3.9	
4	0	

- 1. Let *g* be the function defined by g(x) = -f(x). Complete the table.
- 2. Sketch the graph of g on the same axes as the graph of f but in a different color.
- 3. Describe how to transform the graph of f into the graph of g. Explain how the equation produces this transformation.

4.3

Reflecting Across a Different Way

Here is another copy of the graph of f from the earlier activity. This time, let h be the function defined by h(x) = f(-x).

- 1. Use the definition of h to find h(0). Does your answer agree with your prediction?
- 2. What does your prediction tell you about h(-0.6)? Does your answer agree with the definition of h?
- 3. Complete the tables. The values for *x* will not be the same for the two tables.

x	f(x)		
-3	0		
-1.5	-4.3		
-1	-4		
0	-1.8		
0.6	0		
2.6	3.9		
4	0		

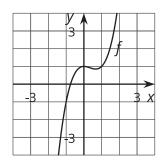
x	h(x) = f(-x)

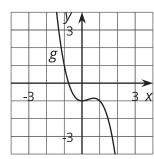
4.	Sketch the	graph of	h on the same	axes as the	graph of	f but in a	different color.
	JICCCCII CIIC	gruprior	n on the same	anco ao aire	grupii oi ,	Ducina	anner ente colon.

5.	Describe what happened to the graph of f to transform it into the graph of h . Explain how
	the equation produces this transformation.

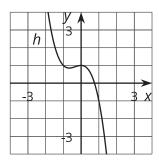
Are you ready for more?

1. Describe how the graph of h relates to the graph of g defined in the earlier activity.


2. Write an equation relating h and g.


Lesson 4 Summary

Here are graphs of the functions f, g, and h, where g(x) = -f(x) and h(x) = f(-x). How do these equations match the transformation we see from f to g and from f to h?


f(x)

g(x) = -f(x)

h(x) = f(-x)

Considering first the equation g(x) = -f(x), we know that for the same input x, the value of g(x) will be the opposite of the value of f(x). For example, since f(0) = 1, we know that g(0) = -f(0) = -1. We can see this relationship in the graphs where g is the reflection of f across the x-axis.

Looking at h(x) = f(-x), this equation tells us that the two functions have the same output for opposite inputs. For example, 1 and -1 are opposites, so h(1) = f(-1) (and h(-1) = f(1) is also true!). We can see this relationship in the graphs where h is the reflection of f across the y-axis.