

### **Lesson 3: Powers of Powers of 10**

Let's look at powers of powers of 10.

# 3.1: Big Cube

What is the volume of a giant cube that measures 10,000 km on each side?

# 3.2: Raising Powers of 10 to Another Power

1. a. Complete the table to explore patterns in the exponents when raising a power of 10 to a power. You may skip a single box in the table, but if you do, be prepared to explain why you skipped it.

| expression    | expanded                                                                                   | single<br>power<br>of 10 |
|---------------|--------------------------------------------------------------------------------------------|--------------------------|
| $(10^3)^2$    | $(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)$                                             | $10^{6}$                 |
| $(10^2)^5$    | $(10 \cdot 10)(10 \cdot 10)(10 \cdot 10)(10 \cdot 10)(10 \cdot 10)$                        |                          |
|               | $(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)(10 \cdot 10 \cdot 10)$ |                          |
| $(10^4)^2$    |                                                                                            |                          |
| $(10^8)^{11}$ |                                                                                            |                          |

b. If you chose to skip one entry in the table, which entry did you skip? Why?

2. Use the patterns you found in the table to rewrite  $(10^m)^n$  as an equivalent expression with a single exponent, like  $10^{\square}$ .



3. If you took the amount of oil consumed in 2 months in 2013 worldwide, you could make a cube of oil that measures  $10^3$  meters on each side. How many cubic meters of oil is this? Do you think this would be enough to fill a pond, a lake, or an ocean?

#### 3.3: How Do the Rules Work?

Andre and Elena want to write  $10^2 \cdot 10^2 \cdot 10^2$  with a single exponent.

- Andre says, "When you multiply powers with the same **base**, it just means you add the exponents, so  $10^2 \cdot 10^2 \cdot 10^2 = 10^{2+2+2} = 10^6$ ."
- Elena says, " $10^2$  is multiplied by itself 3 times, so  $10^2 \cdot 10^2 \cdot 10^2 = (10^2)^3 = 10^{2+3} = 10^5$ ."

Do you agree with either of them? Explain your reasoning.

#### Are you ready for more?

 $2^{12} = 4,096$ . How many other whole numbers can you raise to a power and get 4,096? Explain or show your reasoning.

### **Lesson 3 Summary**

In this lesson, we developed a rule for taking a power of 10 to another power: Taking a power of 10 and raising it to another power is the same as multiplying the exponents. See what happens when raising  $10^4$  to the power of 3.

$$(10^4)^3 = 10^4 \cdot 10^4 \cdot 10^4 = 10^{12}$$

This works for any power of powers of 10. For example,  $\left(10^6\right)^{11}=10^{66}$ . This is another rule that will make it easier to work with and make sense of expressions with exponents.