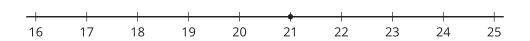
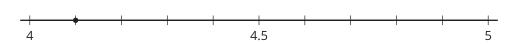
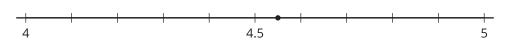
AIS

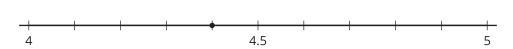
Quadratics and Irrationals


Let's explore irrational numbers.


Where Is $\sqrt{21}$?

Which number line correctly plots the value of $\sqrt{21}$? Explain your reasoning.


Α


В

C

D

20.2

Some Rational Properties

Rational numbers are numbers that can be expressed as fractions with non-zero denominators.

- 1. All of these numbers are rational numbers. Show that they are rational by writing them in the form $\frac{a}{b}$ or $-\frac{a}{b}$ for integers a and b.
 - a. 6.28
 - b. $-\sqrt{81}$
 - c. $\sqrt{\frac{4}{121}}$
 - d. -7.1234

- e. $0.\overline{3}$
- f. $\frac{1.1}{13}$
- 2. All rational numbers have decimal representations, too. Find the decimal representation of each of these rational numbers.
 - a. $\frac{47}{1,000}$
 - b. $-\frac{12}{5}$
 - c. $\frac{\sqrt{9}}{6}$
 - d. $\frac{53}{9}$
 - e. $\frac{1}{7}$
- 3. What do you notice about the decimal representations of rational numbers?

20.3

Approximating Irrational Values

Although $\sqrt{2}$ is irrational, we can approximate its value by considering values near it.

- 1. How can we know that $\sqrt{2}$ is between 1 and 2?
- 2. How can we know that $\sqrt{2}$ is between 1.4 and 1.5?
- 3. Approximate the next decimal place for $\sqrt{2}$.
- 4. Use a similar process to approximate the $\sqrt{5}$ to the thousandths place.