

Lesson 12: Polynomial Division (Part 1)

• Let's learn a way to divide polynomials.

12.1: Notice and Wonder: A Different Use for Diagrams

What do you notice? What do you wonder?

A.
$$(x-3)(x+5) = x^2 + 2x - 15$$

	х	5
x	x^2	5 <i>x</i>
-3	-3 <i>x</i>	-15

B.
$$(x-1)(x^2+3x-4) = x^3+2x^2-7x+4$$

	x^2	3x	-4
х	x^3	$3x^2$	-4 <i>x</i>
-1	$-x^{2}$	-3 <i>x</i>	+4

C.
$$(x-2)$$
(?) = $(x^3 - x^2 - 4x + 4)$

x	x^3	
-2		

12.2: Factoring with Diagrams

Priya wants to sketch a graph of the polynomial f defined by $f(x) = x^3 + 5x^2 + 2x - 8$. She knows f(1) = 0, so she suspects that (x - 1) could be a factor of $x^3 + 5x^2 + 2x - 8$ and writes $(x^3 + 5x^2 + 2x - 8) = (x - 1)(?x^2 + ?x + ?)$ and draws a diagram.

- 1. Finish Priya's diagram.
- 2. Write f(x) as the product of (x 1) and another factor.
- 3. Write f(x) as the product of three linear factors.
- 4. Make a sketch of y = f(x).

12.3: More Factoring with Diagrams

Here are some polynomial functions with known factors. Rewrite each polynomial as a product of linear factors. Note: you may not need to use all the columns in each diagram. For some problems, you may need to make another diagram.

1.
$$A(x) = x^3 - 7x^2 - 16x + 112$$
, $(x - 7)$

	x^2			
х	x^3	0		
-7	$-7x^2$			

2.
$$B(x) = 2x^3 - x^2 - 27x + 36$$
, $\left(x - \frac{3}{2}\right)$

	$2x^2$			
х	$2x^3$	$2x^2$		
$-\frac{3}{2}$	$-3x^2$			

3. $C(x) = x^3 - 3x^2 - 13x + 15$, (x + 3)

x			
3			

4. $D(x) = x^4 - 13x^2 + 36$, (x - 2), (x + 2)

(Hint: $x^4 - 13x^2 + 36 = x^4 + 0x^3 - 13x^2 + 0x + 36$)

5. $F(x) = 4x^4 - 15x^3 - 48x^2 + 109x + 30$, (x - 5), (x - 2), (x + 3)

Are you ready for more?

A diagram can also be used to divide polynomials even when a factor is not linear. Suppose we know (x^2-2x+5) is a factor of $x^4+x^3-5x^2+23x-20$. We could write $(x^4+x^3-5x^2+23x-20)=(x^2-2x+5)(?x^2+?x+?)$. Make a diagram and find the missing factor.

Lesson 12 Summary

What are some things that could be true about the polynomial function defined by $p(x) = x^3 - 5x^2 - 2x + 24$ if we know p(-2) = 0? If we think about the graph of the polynomial, the point (-2,0) must be on the graph as a horizontal intercept. If we think about the expression written in factored form, (x+2) could be one of the factors, since x+2=0 when x=-2. How can we figure out whether (x+2) actually is a factor?

Well, if we assume (x+2) is a factor, there is some other polynomial $q(x) = ax^2 + bx + c$ where a, b, and c are real numbers and p(x) = (x+2)q(x). (Can you see why q(x) has to have a degree of 2?) In the past, we have done things like expand $(x+2)(ax^2+bx+c)$ to find p(x). Since we already know the expression for p(x), we can instead work out the values of a, b, and c by thinking through the calculation.

One way to organize our thinking is to use a diagram. We first fill in (x+2) and the leading term of p(x), x^3 . From this start, we see the leading term of q(x) must be x^2 , meaning a=1, since $x \cdot x^2 = x^3$.

	x^2	
x	x^3	
+2		

We then fill in the rest of the diagram using similar thinking and paying close attention to the signs of each term. For example, we put in a $2x^2$ in the bottom left cell because that's the product of 2 and x^2 . But that means we need to have a $-7x^2$ in the middle cell of the middle row, since that's the only other place we will get an x^2 term, and we need to get $-5x^2$ once all the terms are collected. Continuing in this way, we get the completed table:

	x^2	-7 <i>x</i>	+12
x	x^3	$-7x^2$	+12 <i>x</i>
+2	$+2x^{2}$	-14x	+24

Collecting all the terms in the interior of the diagram, we see that $x^3 - 5x^2 - 2x + 24 = (x+2)(x^2 - 7x + 12)$, so $q(x) = x^2 - 7x + 12$. Notice that the 24 in the bottom right was exactly what we needed, and it's how we know that (x+2) is a factor of p(x). In a future lesson, we will see why this happened. With a bit more factoring, we can say that p(x) = (x+2)(x-3)(x-4).