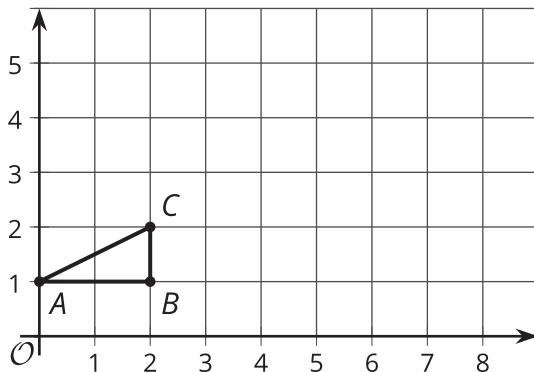


Using Equations for Lines

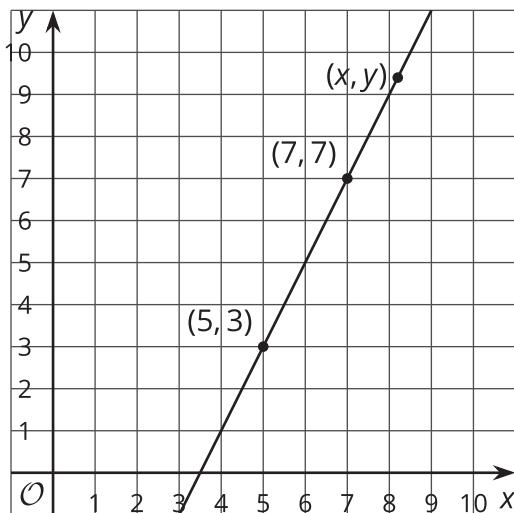
Let's write equations for lines.


17.1 Missing Center

A dilation with scale factor 2 sends A to B . Where is the center of the dilation?

17.2 Dilations and Slope Triangles

Here is triangle ABC .

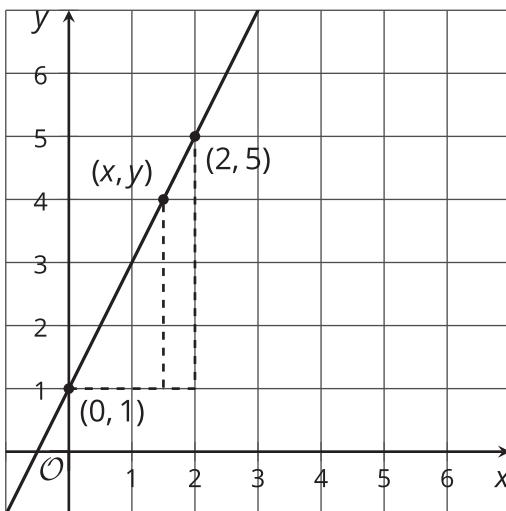

1. Draw the dilation of triangle ABC with center $(0, 1)$ and scale factor 2.
2. Draw the dilation of triangle ABC with center $(0, 1)$ and scale factor 2.5.
3. For which scale factor does the dilation with center $(0, 1)$ send point C to $(9, 5.5)$? Explain your reasoning.
4. What are the coordinates of point C after a dilation with center $(0, 1)$ and scale factor s ?

17.3

Writing Relationships from Two Points

Here is a line.

- Using what you know about similar triangles, find an equation for the line in the diagram.
- What is the slope of this line? Does it appear in your equation?
- Is $(9, 11)$ also on the line? Explain your reasoning.
- Is $(100, 193)$ also on the line? Explain your reasoning.



Are you ready for more?

There are many different ways to write an equation for a line like the one in the *Student Task* you just completed. Does $\frac{y-3}{x-6} = 2$ represent that line? What about $\frac{y-6}{x-4} = 5$? What about $\frac{y+5}{x-1} = 2$? Explain your reasoning.

Lesson 17 Summary

Here is a line with a few of the points labeled.

We can use what we know about slope to decide if a point lies on a line.

First, use points and slope triangles to write an equation for the line.

- The slope triangle with vertices $(0, 1)$ and $(2, 5)$ gives a slope of $\frac{5-1}{2-0} = 2$.
- The slope triangle with vertices $(0, 1)$ and (x, y) gives a slope of $\frac{y-1}{x}$.
- Since these slopes are the same, $\frac{y-1}{x} = 2$ is an equation for the line.

To check whether or not the point $(11, 23)$ lies on this line, we can check that $\frac{23-1}{11} = 2$. Since $(11, 23)$ is a solution to the equation, it's on the line!

