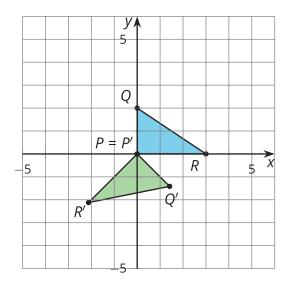
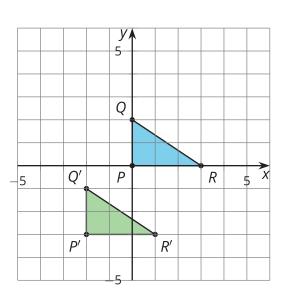
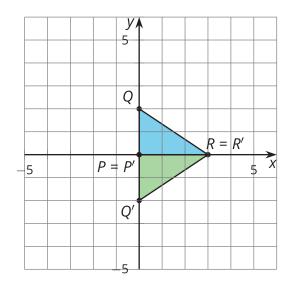

Lesson 17: Parameters and Graphs

• Let's talk about moving graphs around the plane.


17.1: Which One Doesn't Belong: Triangles

Each figure shows triangle PQR, and its image after a transformation, P'Q'R'. Which one doesn't belong?


Α


В

C

D

17.2: Describe the Change

1. Use graphing technology to graph each equation. Describe how each graph changes from the previous graph and draw a sketch of the change.

equation	description of change	sketch of graph
$y = x^2$	original graph	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$y = (x - 5)^2$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$y = (x - 5)^2 + 4$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

2. Describe the change in the given sketch and write an equation that you think would generate that change.

equation	description of change	sketch of graph
$y = x^2$	original graph	5 -5 -5
		$ \begin{array}{c} $
		5 -5 -5

3. How would the graph of $y = -2x^2 - 3$ compare to the graph of $y = 2x^2 - 3$?

17.3: Select a Function

Let's call the graph of $y = x^2$ "the original graph."

Select the function that will affect the original graph in the way described.

1. Shift the vertex of the graph left 1 unit.

• $y = x^2 + 1$

2. Shift the vertex of the graph up 1 unit.

- $y = (x + 1)^2$
- 3. Shift the vertex of the graph right 1 unit and up 1 unit.
- $y = 3x^2$

4. Make the original graph narrower.

- $y = (x 1)^2 + 1$
- 5. Make the original graph narrower, and shift the vertex 1 unit to the right.
- $y = 3(x 1)^2$