

Expressing Transformations of Functions Algebraically

Let's express transformed functions algebraically.

7.1 Describing Translations

Let $g(x) = \sqrt{x}$. Complete the table. Be prepared to explain your reasoning.

words (the graph of $y = g(x)$ is . . .)	function notation	expression
translated left 5 units	$g(x + 5)$	
translated left 5 units and down 3 units		$\sqrt{x + 5} - 3$
	$g(-x)$	$\sqrt{-x}$
translated left 5 units, then down 3 units, then reflected across the y -axis		

7.2 Info Gap: Transforming Functions

Your teacher will give you either a problem card or a data card. Do not show or read your card to your partner.

If your teacher gives you the problem card:

1. Silently read your card and think about what information you need to answer the question.
2. Ask your partner for the specific information that you need. “Can you tell me _____?”
3. Explain to your partner how you are using

If your teacher gives you the data card:

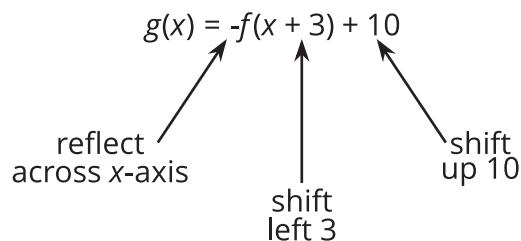
1. Silently read your card. Wait for your partner to ask for information.
2. Before telling your partner any information, ask, “Why do you need to know _____?”
3. Listen to your partner’s reasoning and ask clarifying questions. Only give information

the information to solve the problem. “I need to know _____ because _____.”

- Continue to ask questions until you have enough information to solve the problem.
- Once you have enough information, share the problem card with your partner, and solve the problem independently.
- Read the data card, and discuss your reasoning.

that is on your card. Do not figure out anything for your partner!

- These steps may be repeated.
- Once your partner says they have enough information to solve the problem, read the problem card, and solve the problem independently.
- Share the data card, and discuss your reasoning.


7.3 Translating Vertex Form

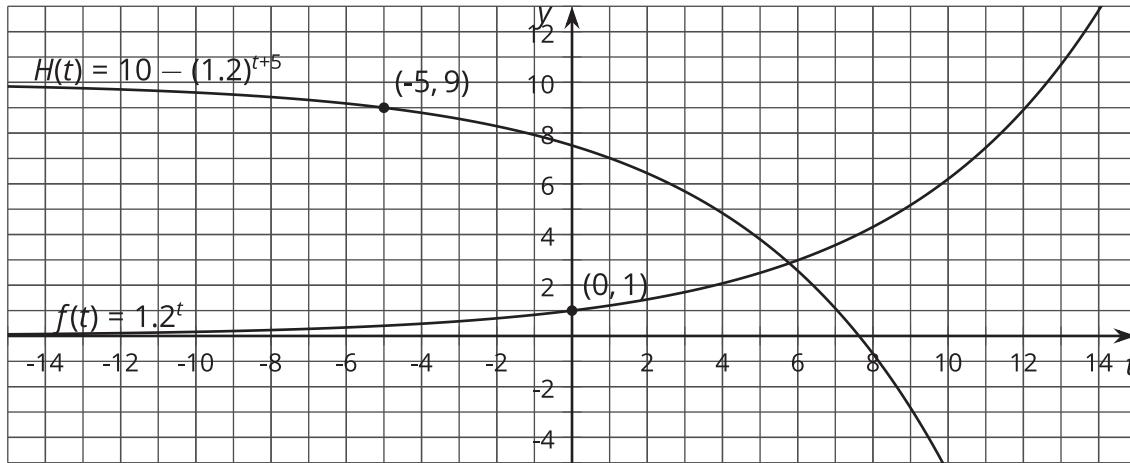
Let f be the function given by $f(x) = x^2$.

- Write an equation for the function g whose graph is the graph of f translated 3 units left and up 5 units.
- What is the vertex of the graph of g ? Explain how you know.
- Write an equation for a quadratic function h whose graph has a vertex at $(1.5, 2.6)$.
- Write an equation for a quadratic function k whose graph opens downward and has a vertex at $(3.2, -4.7)$.

Lesson 7 Summary

You can use the equation of a function to write an equation for its transformation. For example, let $f(x) = x^2$. Take the graph of f , reflect it across the x -axis, translate it up 10 units, and translate it left 3 units. What is an equation for this new function? The new function g is related to f by $g(x) = -f(x + 3) + 10$, since

Which means $g(x) = -(x + 3)^2 + 10$.


Sometimes you can recognize from the expression for a function that it is the transformation of a simpler function. For example, consider:

$$H(t) = 10 - (1.2)^{t+5}$$

One way to obtain the expression for H from 1.2^t is:

- adding 5 to the input to get $(1.2)^{t+5}$
- multiplying the output by -1 to get $-(1.2)^{t+5}$
- adding 10 to the output to get $10 - (1.2)^{t+5}$

So the graph of H is obtained from the graph of $f(t) = 1.2^t$ by translating left 5 units, reflecting across the x -axis, and translating up 10 units. Consider the point $(0, 1)$ on the graph of f . After translating, reflecting, and translating again, it becomes the point $(-5, 9)$ on the graph of H .

