
Representations of Exponential Functions

Let's get information about a function from its graph.

Worked Example: What's the Line?

What is the equation for this graph?

Step 1:

This looks like an exponential equation, so it has a vertical intercept and growth factor.

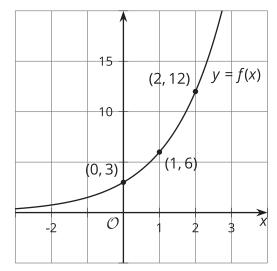
Step 2:

The graph includes the point (0, 10), which is the vertical intercept.

Step 3:

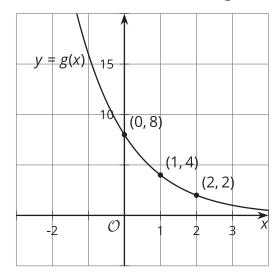
 $8 \div 10 = 0.8$, $6.4 \div 8 = 0.8$, $10 \div 12.5 = 0.8$, the growth factor is 0.8.

Step 4:


The equation is $y = 10 \cdot 0.8^x$.

13.2

Interrogating Function Representations


1. Consider the graph of $f(x) = 3 \cdot 2^x$ and the corresponding table.

х	f(x)
0	3
1	6
2	12

- a. Using the first two points, what is the growth factor?
- b. Using the second two points, what is the growth factor?
- c. Where do you see this growth factor in the equation?
- d. Where do you see the growth factor on the graph?
- e. What is the vertical intercept of the graph?
- f. How can you tell from the equation that this is the vertical intercept?

2. Consider the graph of $g(x) = 8 \cdot \left(\frac{1}{2}\right)^x$ and corresponding table.

х	g(x)
0	8
1	4
2	2

- a. Using the first two points, what is the growth factor?
- b. Using the second two points, what is the growth factor?
- c. Where do you see this growth factor in the equation?
- d. Where do you see the growth factor on the graph?
- e. What is the vertical intercept of the graph?
- f. How can you tell from the equation that this is the vertical intercept?

Matching Representations of Exponential Functions

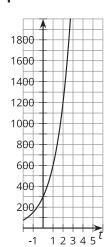
1. Match each function with the graph that represents it.

$$a(t) = 300 \cdot 2^t$$

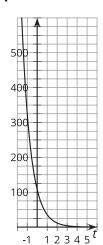
$$b(t) = 300 \cdot 3^t$$

$$c(t) = 300 \cdot \left(\frac{1}{2}\right)^{t}$$

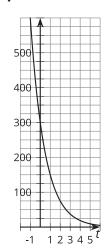
$$c(t) = 300 \cdot \left(\frac{1}{2}\right)^t \qquad d(t) = 300 \cdot \left(\frac{1}{3}\right)^t$$

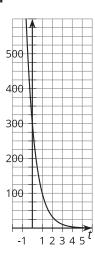

$$e(t) = 108 \cdot 2^t$$

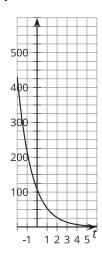
$$f(t) = 108 \cdot 3^t$$

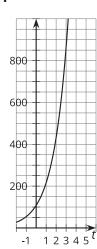

$$g(t) = 108 \cdot \left(\frac{1}{2}\right)^t$$

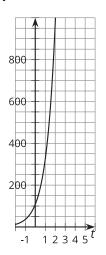
$$g(t) = 108 \cdot \left(\frac{1}{2}\right)^t$$
 $h(t) = 108 \cdot \left(\frac{1}{3}\right)^t$

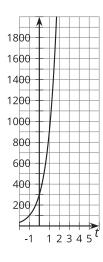

graph 1


graph 2


graph 3


graph 4


graph 5


graph 6

graph 7

graph 8

- 2. On two of the graphs, show where you can see the vertical intercepts: 108 and 300.
- 3. On four of the graphs, show where you can see the growth factors: $\frac{1}{3}$, $\frac{1}{2}$, 2, and 3.