
Lesson 20: Rational and Irrational Solutions
Let’s consider the kinds of numbers we get when solving quadratic equations.

20.1: Rational or Irrational?
Numbers like -1.7, , and are known as rational numbers.

Numbers like are known as irrational numbers.

Here is a list of numbers. Sort them into rational and irrational.

97 -8.2

20.2: Suspected Irrational Solutions
1. Graph each quadratic equation using graphing technology. Identify the zeros of the

function that the graph represents, and say whether you think they might be rational
or irrational. Be prepared to explain your reasoning.

equations zeros rational or irrational?

2. Find exact solutions (not approximate solutions) to each equation and show your
reasoning. Then, say whether you think each solution is rational or irrational. Be
prepared to explain your reasoning.

a.

b.

•
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c.

d.

20.3: Experimenting with Rational and Irrational Numbers
Here is a list of numbers:

Here are some statements about the sums and products of numbers. For each statement,
decide whether it is always true, true for some numbers but not others, or never true.

1. Sums:

a. The sum of two rational numbers is rational.

b. The sum of a rational number and an irrational number is irrational.

c. The sum of two irrational numbers is irrational.

2. Products:

a. The product of two rational numbers is rational.

b. The product of a rational number and an irrational number is irrational.

c. The product of two irrational numbers is irrational.

Experiment with sums and products of two numbers in the given list to help you decide.

Are you ready for more?

It can be quite difficult to show that a number is irrational. To do so, we have to explain
why the number is impossible to write as a ratio of two integers. It took mathematicians
thousands of years before they were finally able to show that is irrational, and they still
don’t know whether or not is irrational.
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Here is a way we could show that can’t be rational, and is therefore irrational.

Let's assume that were rational and could be written as a fraction , where and

are non-zero integers.

Let’s also assume that and are integers that no longer have any common factors.
For example, to express 0.4 as , we write instead of or . That is, we assume

that and are 2 and 5, rather than 4 and 10, or 200 and 500.

1. If , then .

2. Explain why must be an even number.

3. Explain why if is an even number, then itself is also an even number. (If you get
stuck, consider squaring a few different integers.)

4. Because is an even number, then is 2 times another integer, say, . We can write
. Substitute for in the equation you wrote in the first question. Then,

solve for .

5. Explain why the resulting equation shows that , and therefore , are also even
numbers.

6. We just arrived at the conclusion that and are even numbers, but given our
assumption about and , it is impossible for this to be true. Explain why this is.

•

•
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If and cannot both be even, must be equal to some number other than .

Because our original assumption that we could write as a fraction led to a false

conclusion, that assumption must be wrong. In other words, we must not be able to write

as a fraction. This means is irrational!

Lesson 20 Summary

The solutions to quadratic equations can be rational or irrational. Recall that:

Rational numbers are fractions and their opposites. Numbers like 12, -3, , -4.79,

and are rational. ( is a fraction, because it’s equal to . The number -4.79 is

the opposite of 4.79, which is .)

Any number that is not rational is irrational. Some examples are , and

. When an irrational number is written as a decimal, its digits do not stop or

eventually make a repeating pattern, so a decimal can only approximate the value of
the number.

How do we know if the solutions to a quadratic equation are rational or irrational?

If we solve a quadratic equation by graphing a corresponding function
( ), sometimes we can tell from the -coordinates of the -intercepts.
Other times, we can't be sure.

Let's solve and by graphing and .

The graph of crosses the -axis

at -0.7 and 0.7. There are no digits after the
7, suggesting that the -values are exactly

and , which are rational.

To verify that these numbers are exact
solutions to the equation, we can see if they
make the original equation true.

and , so

are exact solutions.

•

•
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The graph of , created using graphing technology, is shown to cross the -axis
at -2.236 and 2.236. It is unclear if the -coordinates stop at three decimal places or if they
continue. If they stop or eventually make a repeating pattern, the solutions would be
rational. If they never stop or make a repeating pattern, the solutions would be irrational.

We can tell, though, that 2.236 is not an exact solution to the equation. Substituting 2.236
for in the original equation gives , which we can tell is close to 0 but is not
exactly 0. This means are not exact solutions, and the solutions may be irrational.

To be certain whether the solutions are rational or irrational, we can solve the equations.

The solutions to are , which are rational.

The solutions to are , which are irrational. (2.236 is an approximation

of , not equal to .)

What about a solution like , which is a sum of a rational number and an irrational

one? Or a solution like , which is a product of a rational number and an irrational

number? Are they rational or irrational?

We will investigate solutions that are sums and products of different types of numbers in
an upcoming lesson.

•

•
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