

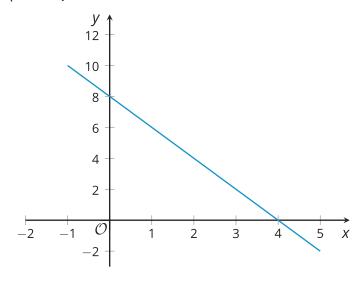
# Graphs of Functions in Standard and Factored Forms

Let's find out what quadratic expressions in standard and factored forms can reveal about the properties of their graphs.

10.1

#### A Linear Equation and Its Graph

Here is a graph of the equation y = 8 - 2x.



1. Where do you see the 8 from the equation in the graph?

2. Where do you see the -2 from the equation in the graph?

3. What is the x-intercept of the graph? How does this relate to the equation?



## 10.2

#### **Revisiting Projectile Motion**

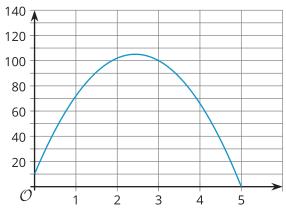
In an earlier lesson, we saw that an equation such as  $h(t) = 10 + 78t - 16t^2$  can model the height of an object thrown upward from a height of 10 feet with a vertical velocity of 78 feet per second.



1. Is the expression  $10 + 78t - 16t^2$  written in standard form? Explain how you know.

2. Jada said that the equation g(t) = (-16t - 2)(t - 5) also defines the same function, written in factored form. Show that Jada is correct.

3. Here is a graph representing both g(t) = (-16t - 2)(t - 5) and  $h(t) = 10 + 78t - 16t^2$ .



a. Identify or approximate the vertical and horizontal intercepts.

b. What do each of these points mean in this situation?

### **Relating Expressions and Their Graphs**

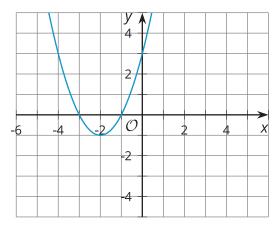
Here are pairs of expressions in standard and factored forms. Each pair of expressions define the same quadratic function, which can be represented with the given graph.

1. Identify the *x*-intercepts and the *y*-intercept of each graph.

Function f

$$x^2 + 4x + 3$$

$$(x + 3)(x + 1)$$



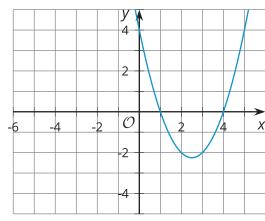
*x*-intercepts:

*y*-intercept:

Function g

$$x^2 - 5x + 4$$

$$(x-4)(x-1)$$



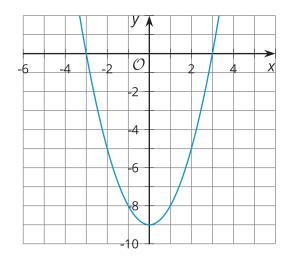
*x*-intercepts:

*y*-intercept:

Function *h* 

$$x^2 - 9$$

$$(x-3)(x+3)$$



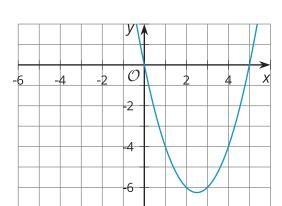
*x*-intercepts:

*y*-intercept:

Function *i* 

$$x^2 - 5x$$

$$x(x-5)$$



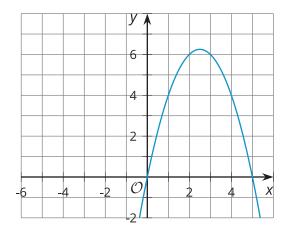
*x*-intercepts:

*y*-intercept:

Function j

$$5x - x^2$$

$$x(5-x)$$



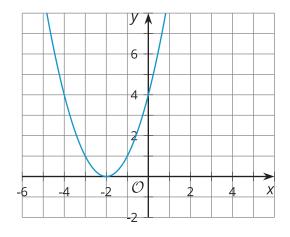
*x*-intercepts:

*y*-intercept:

Function *k* 

$$x^2 + 4x + 4$$

$$(x + 2)(x + 2)$$



*x*-intercepts:

*y*-intercept:

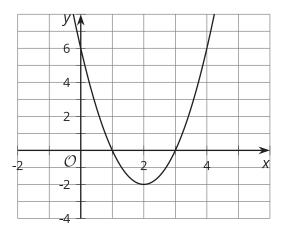
2. What do you notice about the x-intercepts, the y-intercept, and the numbers in the expressions defining each function? Make a couple of observations.

3. Here is an expression that models function p, another quadratic function: (x-9)(x-1). Predict the x-intercepts and the y-intercept of the graph that represent this function.

### Ģ

#### Are you ready for more?

Find the values of a, p, and q that will make y = a(x - p)(x - q) be the equation represented by the graph.

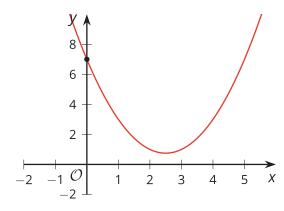




#### Lesson 10 Summary

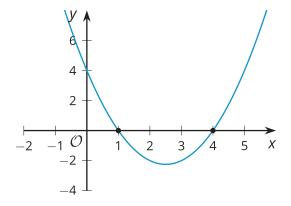
Different forms of quadratic functions can tell us interesting information about the function's graph. When a quadratic function is expressed in standard form, it can tell us the *y*-intercept of the graph that represents the function.

For example, the graph representing  $y = x^2 - 5x + 7$  has its y-intercept at (0, 7). This makes sense because the *v*-coordinate is the y-value when x is 0. Evaluating the expression at x = 0 gives  $y = 0^2 - 5(0) + 7$ , which equals 7.

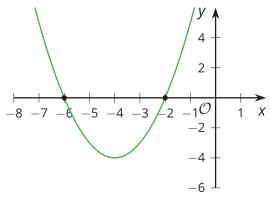


When a function is expressed in factored form, it can help us see the *x*-intercepts of its graph. Let's look at function f, given by f(x) = (x-4)(x-1) and function g, given by g(x) = (x+2)(x+6).

If we graph y = f(x), we see that the x-intercepts of the graph are (1,0) and (4,0). Notice that 1 and 4 also appear in f(x) = (x-4)(x-1), and they are subtracted from x.



If we graph y = g(x), we see that the x-intercepts are at (-2,0) and (-6,0). Notice that 2 and 6 are also in the equation g(x) = (x + 2)(x + 6), but they are added to x.



The connection between the factored form and the x-intercepts of the graph tells us about the zeros of the function (the input values that produce an output of 0).

