

Lots of Lines (Part 1)

Narrator: Diego, Jada, and Noah were given the following task: "Prove that if a point C is the same distance from A as it is from B , then C must be on the perpendicular bisector of AB ." At first they were really stuck.

Noah: How do you prove a point is on a line?

Narrator: Their teacher gave them the hint, "Another way to think about it is to draw a line that you know C is on, and prove that line has to be the perpendicular bisector." They each drew a line and thought about their pictures.

Diego: I drew a line through C that was perpendicular to AB and through the midpoint of AB . That line is the perpendicular bisector of AB and C is on it, so that proves C is on the perpendicular bisector."

Jada: I thought the line through C would probably go through the midpoint of AB so I drew that and labeled the midpoint D . Triangle ACB is isosceles, so angles A and B are congruent, and AC and BC are congruent. And AD and DB are congruent because D is a midpoint. That made two congruent triangles by the Side-Angle-Side Triangle Congruence Theorem. So I know angle ADC and angle BDC are congruent, but I still don't know if DC is the perpendicular bisector of AB .

Noah: In the Isosceles Triangle Theorem proof, Mai and Kiran drew an angle bisector in their isosceles triangle, so I'll try that. I'll draw the angle bisector of angle ACB . The point where the angle bisector hits AB will be D . So triangles ACD and BCD are congruent, which means AD and BD are congruent, so D is a midpoint and CD is the perpendicular bisector.

Lots of Lines (Part 1)

Narrator: Diego, Jada, and Noah were given the following task: "Prove that if a point C is the same distance from A as it is from B , then C must be on the perpendicular bisector of AB ." At first they were really stuck.

Noah: How do you prove a point is on a line?

Narrator: Their teacher gave them the hint, "Another way to think about it is to draw a line that you know C is on, and prove that line has to be the perpendicular bisector." They each drew a line and thought about their pictures.

Diego: I drew a line through C that was perpendicular to AB and through the midpoint of AB . That line is the perpendicular bisector of AB and C is on it, so that proves C is on the perpendicular bisector."

Jada: I thought the line through C would probably go through the midpoint of AB so I drew that and labeled the midpoint D . Triangle ACB is isosceles, so angles A and B are congruent, and AC and BC are congruent. And AD and DB are congruent because D is a midpoint. That made two congruent triangles by the Side-Angle-Side Triangle Congruence Theorem. So I know angle ADC and angle BDC are congruent, but I still don't know if DC is the perpendicular bisector of AB .

Noah: In the Isosceles Triangle Theorem proof, Mai and Kiran drew an angle bisector in their isosceles triangle, so I'll try that. I'll draw the angle bisector of angle ACB . The point where the angle bisector hits AB will be D . So triangles ACD and BCD are congruent, which means AD and BD are congruent, so D is a midpoint and CD is the perpendicular bisector.

