

End Behavior (Part 1)

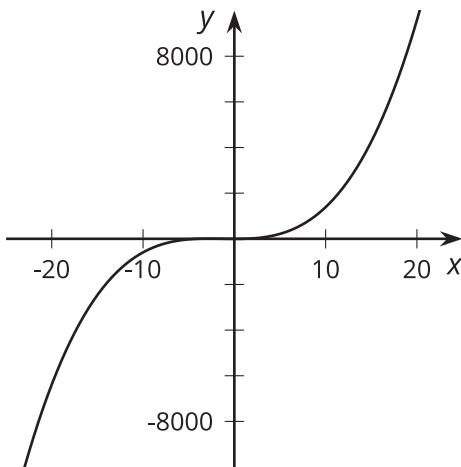
Let's investigate the shape of polynomials.

8.1

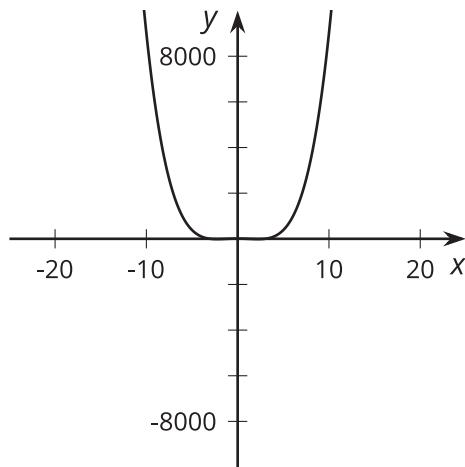
Notice and Wonder: A Different View

What do you notice? What do you wonder?

$$y = x^3 + 4x^2 - x - 4$$



$$y = x^4 - 10x^2 + 9$$



8.2

Polynomial End Behavior

1. In the column for your assigned polynomial, evaluate for the different values of x . Discuss what you notice with your group.

x	$y = x^2 + 1$	$y = x^3 + 1$	$y = x^4 + 1$	$y = x^5 + 1$
-1000				
-100				
-10				
-1				
1				
10				
100				
1000				

2. Sketch what you think the **end behavior** of your polynomial looks like, then check your work using graphing technology.

Are you ready for more?

Mai is studying the function $p(x) = -\frac{1}{100}x^3 + 25,422x^2 + 8x + 26$. She makes a table of values for p with $x = \pm 1, \pm 5, \pm 10, \pm 20$ and thinks that this function has large positive output values in both directions on the x -axis. Do you agree with Mai? Explain your reasoning.

8.3 Two Polynomial Equations

Consider the polynomial $y = 2x^5 - 5x^4 - 30x^3 + 5x^2 + 88x + 60$.

- Identify the degree of the polynomial.
- Which of the 6 terms, $2x^5$, $5x^4$, $30x^3$, $5x^2$, $88x$, or 60 , is greatest when:
 - $x = 0$
 - $x = 1$
 - $x = 3$
 - $x = 5$
- Describe the end behavior of the polynomial.

Lesson 8 Summary

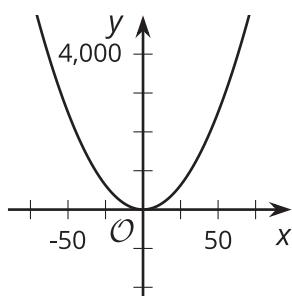
The value of the leading term determines the **end behavior** of the function, that is, how the outputs of the function change as we look at input values farther and farther from 0.

Consider the polynomial $P(x) = x^4 - 30x^3 - 20x^2 + 1000$. The leading term, x^4 , almost seems smaller than the other three terms, and for certain values of x , this is even true. But, for values of x far away from 0, the leading term will always have the greatest value. In the case of P , as x gets larger and larger in the positive and negative directions, the output of the function gets larger and larger in the positive direction.

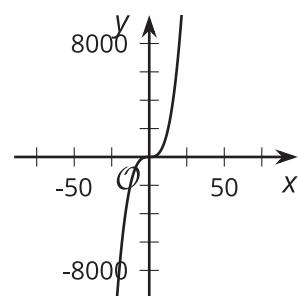
x	x^4	$-30x^3$	$-20x^2$	1000	$P(x)$
-500	62,500,000,000	3,750,000,000	-5,000,000	1,000	66,245,001,000
-100	100,000,000	30,000,000	-200,000	1,000	129,801,000
-10	10,000	30,000	-2,000	1,000	39,000
0	0	0	0	1,000	1000
10	10,000	-30,000	-2,000	1,000	-21,000
100	100,000,000	-30,000,000	-200,000	1,000	69,801,000
500	62,500,000,000	-3,750,000,000	-5,000,000	1,000	58,745,001,000

If we graph $y = x^2$, $y = x^3$ and $y = x^4$ and zoom out, we see the following:

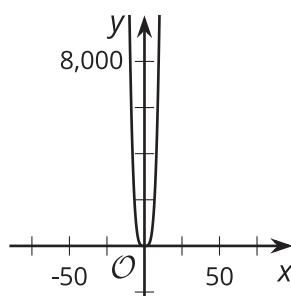
$$y = x^2$$



$$y = x^3$$



$$y = x^4$$



For both $y = x^2$ and $y = x^4$, large positive values of x or large negative values of x each result in large positive values of y .

But for $y = x^3$, large positive values of x result in large positive values of y , while large negative values of x result in large negative values of y .