

Lesson 12 Practice Problems

- 1. a. What is the volume of a cube with a side length of i. 4 centimeters?
 - ii. $\sqrt[3]{11}$ feet?
 - iii. *s* units?
 - b. What is the side length of a cube with a volume of i. 1,000 cubic centimeters?
 - ii. 23 cubic inches?
 - iii. *v* cubic units?

2. Write an equivalent expression that doesn't use a cube root symbol.

a.
$$\sqrt[3]{1}$$

b.
$$\sqrt[3]{216}$$

c.
$$\sqrt[3]{8000}$$

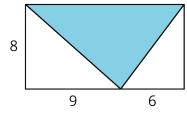
d.
$$\sqrt[3]{\frac{1}{64}}$$

e.
$$\sqrt[3]{\frac{27}{125}}$$

f.
$$\sqrt[3]{0.027}$$

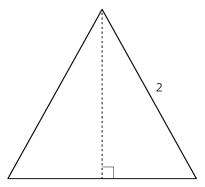
g.
$$\sqrt[3]{0.000125}$$

3. Find the distance between each pair of points. If you get stuck, try plotting the points on graph paper.


a.
$$X = (5,0)$$
 and $Y = (-4,0)$

b.
$$K = (-21, -29)$$
 and $L = (0, 0)$

(From Unit 8, Lesson 11.)



4. Here is a 15-by-8 rectangle divided into triangles. Is the shaded triangle a right triangle? Explain or show your reasoning.

(From Unit 8, Lesson 9.)

5. Here is an equilateral triangle. The length of each side is 2 units. A height is drawn. In an equilateral triangle, the height divides the opposite side into two pieces of equal length.

- a. Find the exact height.
- b. Find the area of the equilateral triangle.
- c. (Challenge) Using x for the length of each side in an equilateral triangle, express its area in terms of x.

(From Unit 8, Lesson 10.)