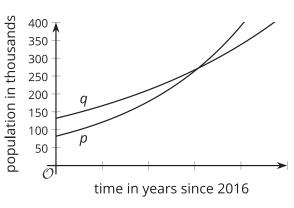


Lesson 16 Practice Problems


1. The revenues of two companies can be modeled with exponential functions f and g. Here are the graphs of the two functions. In each function, the revenue is in thousands of dollars and time, t, is measured in years. The y-coordinate of the intersection is 215.7. Select **all** statements that correctly describe what the two graphs reveal about the revenues.

- A. The intersection of the graphs tells us when the revenues of the two companies grow by the same factor.
- B. The intersection tells us when the two companies have the same revenue.
- C. At the intersection, f(t) > g(t).
- D. At the intersection, f(t) = 215.7 and g(t) = 215.7.
- E. We need to know both expressions that define f and g to find the value of t at the intersection.
- F. If we know at least one of the expressions that define f and g, we can calculate the value of t at the intersection.

2. The population of a fast-growing city in Texas can be modeled with the equation $p(t) = 82 \cdot e^{(0.078t)}$. The population of a fast-growing city in Tennessee can be modeled with $q(t) = 132 \cdot e^{(0.047t)}$. In both equations, t represents years since 2016 and the population is measured in thousands. The graphs representing the two functions are shown. The point where the two graphs intersect has a y-coordinate of about 271.7.

- a. What does the intersection mean in this situation?
- b. Find the x-coordinate of the intersection point by solving each equation. Show your reasoning.

i.
$$p(t) = 271.7$$

ii.
$$q(t) = 271.7$$

c. Explain why we can find out the t value at the intersection of the two graphs by solving p(t) = q(t).

3. The function f is given by $f(x) = 100 \cdot 3^x$. Select **all** equations whose graph meets the graph of f for a *positive* value of x.

A.
$$y = 10 \cdot e^x$$

B.
$$y = 500 \cdot e^x$$

C.
$$y = 500 \cdot e^{-x}$$

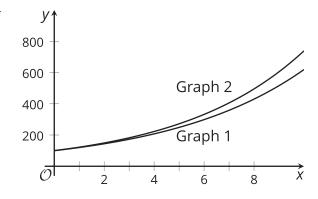
D.
$$y = 1,000 \cdot 2^x$$

E.
$$y = 600 \cdot 10^x$$

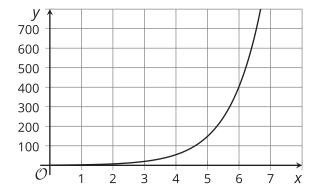
4. The half-life of nickel-63 is 100 years. A students says, "An artifact with nickel-63 in it will lose a quarter of that substance in 50 years."

Do you agree with this statement? Explain your reasoning.

5. *Technology required*. Estimate the value of each expression and record it. Then, use a calculator to find its value and record it.


expression	estimate	calculator value
log 123		
log 110,000		
log 1.1		

(From Unit 4, Lesson 11.)


6. Here are graphs of the functions f and g given by $f(x) = 100 \cdot (1.2)^x$ and $g(x) = 100 \cdot e^{0.2x}$.

Which graph corresponds to each function? Explain how you know.

(From Unit 4, Lesson 13.)

7. Here is a graph that represents $f(x) = e^x$.

Explain how we can use the graph to estimate:

- a. The solution to an equation such as $300 = e^x$.
- b. The value of ln 700.

(From Unit 4, Lesson 15.)