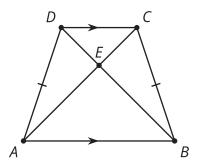


Lesson 10 Practice Problems

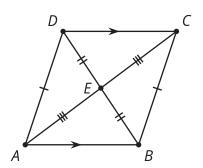
1. Painters and carpenters use scaffolding to climb buildings from the outside. What shapes do you see? Why does one figure have more right angles?

2. Select **all** true statements based on the diagram.

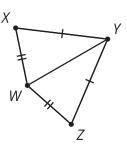


- A. Angle CBE is congruent to angle ABE.
- B. Angle CEB is congruent to angle DEA.
- C. Segment DA is congruent to segment CB.
- D. Segment DC is congruent to segment AB.
- E. Line DC is parallel to line AB.
- F. Line DA is parallel to line CB.

3. Prove ABCD is a parallelogram.

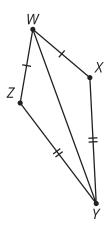


4. Tyler has proven that triangle WYZ is congruent to triangle WYX using the Side-Side-Side Triangle Congruence Theorem. Why can he now conclude that diagonal WY bisects angles ZWX and ZYX?



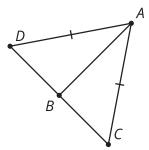
(From Unit 2, Lesson 9.)

5. WXYZ is a kite. Angle WXY has a measure of 133 degrees and angle ZYX has a measure of 34 degrees. Find the measure of angle ZWY.



(From Unit 2, Lesson 9.)

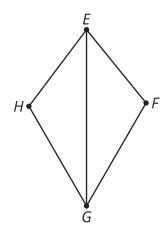
6. Elena is thinking through a proof using a reflection to show that the base angles of an isosceles triangle are congruent. Complete the missing information for her proof.



Call the midpoint of	of segment CL	11	Co	. Construct the perpendicular		
bisector of segment CD . The perpendicular bisector of CD must go through B since						
it's the midpoint. \emph{A} is also on the perpendicular of \emph{CD} because the distance from \emph{A}						
to2	is the same	as the distar	nce from A	to	3	We
want to show triangle ADC is congruent to triangle ACD . Reflect triangle ADC						
across line	4 . Si	nce <u></u> 5	<u>5</u> i	s on the li	ne of refle	ction, it
definitely lines up	with itself. $\it DB$	is congruent	to	6	$\underline{}$ since A	$oldsymbol{\mathit{B}}$ is the
perpendicular bise	ector of $CD.\ D$	' will coincide	with	7	since	it is on
the other side of a perpendicular line and the same distance from it (and that's the						
definition of reflec	tion!). C^\prime will c	oincide with	8	Siı	nce it is or	า the
other side of a perpendicular line and the same distance from it (and that's the						
definition of reflection!). Since the rigid transformation will take triangle ADC onto						
triangle ACD , that	t means angle	9	will k	be taken o	nto angle	
	_ (they are cor					
therefore they are congruent.						

(From Unit 2, Lesson 8.)

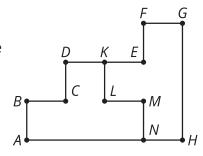
7. Segment EG is an angle bisector of angle FGH. Noah wrote a proof to show that triangle HEG is congruent to triangle FEG. Noah's proof is not correct. Why is Noah's proof incorrect?



- $^{\circ}$ Side EG is congruent to side EG because they're the same segment.
- \circ Angle EGH is congruent to angle EGF because segment EG is an angle bisector of angle FGH.
- $^{\circ}$ Angle HEG is congruent to angle FEG because segment EG is an angle bisector of angle FGH.
- $^{\circ}$ By the Angle-Side-Angle Triangle Congruence Theorem, triangle HEG is congruent to triangle FEG.

(From Unit 2, Lesson 7.)

8. Figure HNMLKEFG is the image of figure ABCDKLMN after being rotated 90 degrees counterclockwise around point K. Draw an auxiliary line in figure ABCDKLMN to create a quadrilateral. Draw the image of the auxiliary line when rotated 90 degrees counterclockwise around point K.



Write a congruence statement for the quadrilateral you created in figure ABCDKLMN and the image of the quadrilateral in figure HNMLKEFG.

(From Unit 2, Lesson 2.)