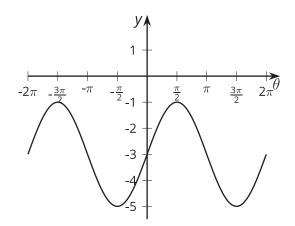


Lesson 13 Practice Problems

1. For each trigonometric function, indicate the amplitude and midline.

a.
$$y = 2\sin(\theta)$$


b.
$$y = \cos(\theta) - 5$$

c.
$$y = 1.4 \sin(\theta) + 3.5$$

2. Here is a graph of the equation

$$y = 2\sin(\theta) - 3.$$

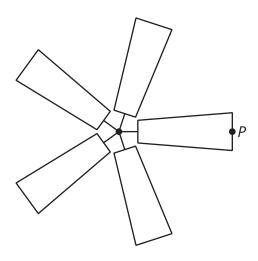
- a. Indicate the midline on the graph.
- b. Use the graph to find the amplitude of this sine equation.

3. Select all trigonometric functions with an amplitude of 3.

A.
$$y = 3\sin(\theta) - 1$$

B.
$$y = \sin(\theta) + 3$$

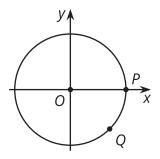
$$C. y = 3\cos(\theta) + 2$$


D.
$$y = \cos(\theta) - 3$$

$$E. y = 3\sin(\theta)$$

$$F. y = \cos(\theta - 3)$$

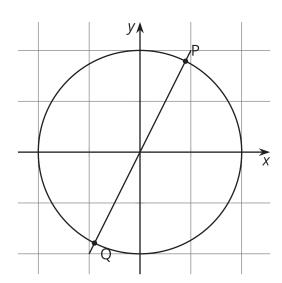
4. The center of a windmill is 20 feet off the ground and the blades are 10 feet long.


rotation angle of windmill	vertical position of P in feet
$\frac{\pi}{6}$	
$\frac{\pi}{3}$	
$\frac{\pi}{2}$	
π	
$\frac{3\pi}{2}$	

- a. Fill out the table showing the vertical position of ${\it P}$ after the windmill has rotated through the given angle.
- b. Write an equation for the function f that describes the relationship between the angle of rotation θ and the vertical position of the point P, $f(\theta)$, in feet.
- 5. The measure of angle θ , in radians, satisfies $\sin(\theta) < 0$. If θ is between 0 and 2π what can you say about the measure of θ ?

(From Unit 6, Lesson 9.)

6. Which rotations, with center O, take P to Q? Select **all** that apply.



- A. $\frac{3\pi}{4}$ radians
- B. $\frac{15\pi}{4}$ radians
- C. $\frac{7\pi}{4}$ radians
- D. $\frac{11\pi}{4}$ radians
- E. $\frac{23\pi}{4}$ radians

(From Unit 6, Lesson 10.)

7. The picture shows two points ${\it P}$ and ${\it Q}$ on the unit circle.

Explain why the tangent of P and Q is 2.

(From Unit 6, Lesson 12.)