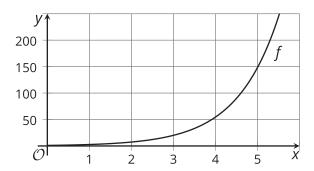
Unit 4 Lesson 15: Using Graphs and Logarithms to Solve Problems (Part 1)

1 Using a Graph to Estimate (Warm up)

Student Task Statement



Here is a graph that represents an exponential function with base e, defined by $f(x) = e^x$.

- 1. Explain how to use the graph to estimate logarithms such as $\ln 100$.
- 2. Use the graph to estimate $\ln 100$.
- 3. How can you use a calculator to check your estimate? What would you enter into the calculator?

2 Retire A Millionaire?

Student Task Statement

The expression $1 \cdot e^{(0.06t)}$ models the balance, in thousands of dollars, of an account t years after the account was opened.

- 1. What is the account balance:
 - a. when the account is opened?
 - b. after 1 year?
 - c. after 2 years?
- 2. Diego says that the expression $\ln 5$ represents the time, in years, when the account will have 5 thousand dollars. Do you agree? Explain your reasoning.
- 3. Suppose you opened this account at the beginning of this year. Assume that you deposit no additional money and withdraw nothing from the account. Will the account balance reach \$1,000,000 and make you a millionaire by the time you reach retirement? Show your reasoning.

3 Cicada Population

Student Task Statement

A population of cicadas is modeled by a function defined by $f(w) = 250 \cdot e^{(0.5w)}$ where w is the number of weeks since the population was first measured.

- 1. Explain why solving the equation $500 = 250 \cdot e^{(0.5w)}$ gives the number of weeks it takes for the cicada population to double.
- 2. How many weeks does it take the cicada population to double? Show your reasoning.
- 3. Use graphing technology to graph y=f(w) and $y=100{,}000$ on the same axes. Explain why we can use the intersection of the two graphs to estimate when the cicada population will reach 100,000.