

Construction from Definition (Part 1)

Narrator: Han, Clare, and Andre need to construct an angle bisector.

Han: We can use a circle to construct two points the same distance from point A . Let's label those points D and E .

Clare: Now we can connect D and E . Let's label the midpoint of segment DE and call it F .

Andre: So now draw ray AF . That's the bisector of angle DAE .

Narrator: Now Han, Clare, and Andre need to write a proof that ray AF is the angle bisector of angle DAE . They each start by sharing some rough draft thinking.

Han: We know F is the midpoint of segment DE . So segments DF and EF are the same length. I notice that F is also on the perpendicular bisector of angle DAE .

Clare: Since segment DA is congruent to segment EA , triangle DEA is isosceles. And DF has to be congruent to EF because they are the same length. So, AF has to be the angle bisector.

Andre: What if you draw a segment from F to A ? Segments DF and EF are congruent. Also, angle DAF is congruent to angle EAF . Then both triangles are congruent on either side of the angle bisector line.

Construction from Definition (Part 1)

Narrator: Han, Clare, and Andre need to construct an angle bisector.

Han: We can use a circle to construct two points the same distance from point A . Let's label those points D and E .

Clare: Now we can connect D and E . Let's label the midpoint of segment DE and call it F .

Andre: So now draw ray AF . That's the bisector of angle DAE .

Narrator: Now Han, Clare, and Andre need to write a proof that ray AF is the angle bisector of angle DAE . They each start by sharing some rough draft thinking.

Han: We know F is the midpoint of segment DE . So segments DF and EF are the same length. I notice that F is also on the perpendicular bisector of angle DAE .

Clare: Since segment DA is congruent to segment EA , triangle DEA is isosceles. And DF has to be congruent to EF because they are the same length. So, AF has to be the angle bisector.

Andre: What if you draw a segment from F to A ? Segments DF and EF are congruent. Also, angle DAF is congruent to angle EAF . Then both triangles are congruent on either side of the angle bisector line.