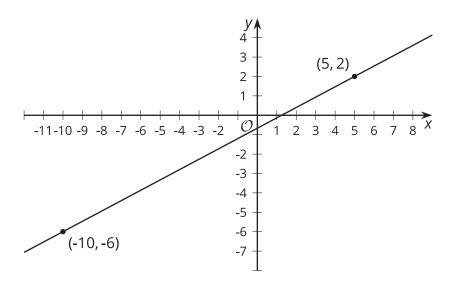
Equations of Lines

Let's investigate equations of lines.

9.1

Remembering Slope

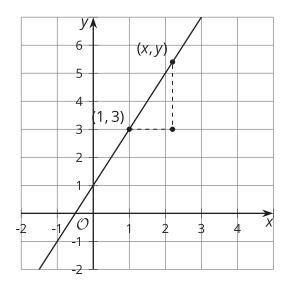


The slope of the line in the image is $\frac{8}{15}$. Explain how you know this is true.

9.2

Building an Equation for a Line

1. The image shows a line.



a. Write an equation that says the slope between the points (1,3) and (x,y) is 2.

b. Look at this equation: y - 3 = 2(x - 1)How does it relate to the equation you wrote?

2. Here is an equation for another line: $y - 7 = \frac{1}{2}(x - 5)$

a. What point do you know this line passes through?

b. What is the slope of this line?

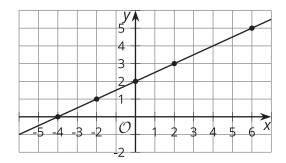
3. Next, let's write a general equation that we can use for any line. Suppose we know that a line passes through a particular point, (h, k).

a. Write an equation that says the slope between points (x, y) and (h, k) is m.

b. Look at this equation: y - k = m(x - h). How does it relate to the equation you wrote?

Using Point-Slope Form

- 1. Write an equation that describes each line.
 - a. the line passing through point (-2, 8) with slope $\frac{4}{5}$
 - b. the line passing through point (0, 7) with slope $-\frac{7}{3}$
 - c. the line passing through point $(\frac{1}{2},0)$ with slope -1
 - d. the line in the image



2. Using the structure of the equation, what point do you know each line passes through? What's the line's slope?

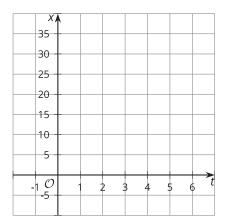
a.
$$y - 5 = \frac{3}{2}(x + 4)$$

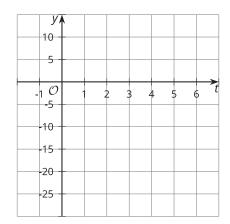
b.
$$y + 2 = 5x$$

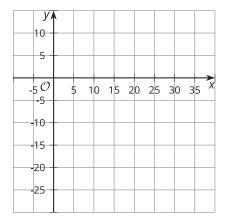
c.
$$y = -2(x - \frac{5}{8})$$

Are you ready for more?

Another way to describe a line, or other graphs, is to think about the coordinates as changing over time. This is especially helpful if we're thinking of tracing an object's movement. This example describes the x- and y-coordinates separately, each in terms of time, t.





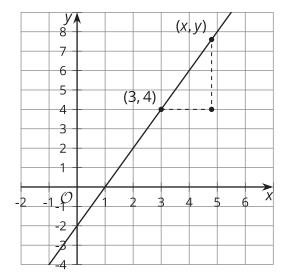


- 1. On the first grid, create a graph of x = 2 + 5t for $-2 \le t \le 7$ with x on the vertical axis and t on the horizontal axis.
- 2. On the second grid, create a graph of y = 3 4t for $-2 \le t \le 7$ with y on the vertical axis and *t* on the horizontal axis.
- 3. On the third grid, create a graph of the set of points (2 + 5t, 3 4t) for $-2 \le t \le 7$ on the *xy*-plane.

Lesson 9 Summary

The line in the image can be defined as the set of points that have a slope of 2 with the point (3,4).

An equation that says point (x, y) has slope 2 with (3, 4) is $\frac{y-4}{x-3} = 2$. This equation can be rearranged to look like y - 4 = 2(x - 3).



The equation is now in **point-slope form**, or y - k = m(x - h), where:

- (x, y) is any point on the line.
- (h, k) is a particular point on the line that we choose to substitute into the equation.
- *m* is the slope of the line.

Other ways to write the equation of a line include slope-intercept form, y = mx + b, and standard form, Ax + By = C.

To write the equation of a line passing through (3,1) and (0,5), start by finding the slope of the line. The slope is $-\frac{4}{3}$ because $\frac{5-1}{0-3}=-\frac{4}{3}$. Substitute this value for m to get $y-k=-\frac{4}{3}(x-h)$. Now we can choose any point on the line to substitute for (h,k). If we choose (3,1), we can write the equation of the line as $y-1=-\frac{4}{3}(x-3)$.

We could also use (0,5) as the point, giving $y-5=-\frac{4}{3}(x-0)$. We can rearrange the equation to see how point-slope and slope-intercept forms relate, getting $y=-\frac{4}{3}x+5$. Notice that (0,5) is the y-intercept of the line. The graphs of all three of these equations look the same.

Geometry

Unit 6