

Reintroducing Inequalities

Let's work with inequalities.

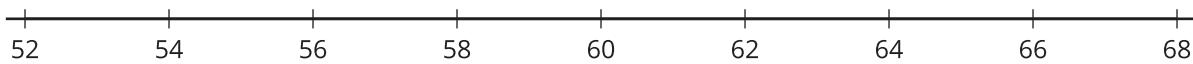
13.1 Greater Than One

The number line shows values of x that make the inequality $x > 1$ true.

Select **all** the values of x from this list that make the inequality $x > 1$ true.

- A. 3
- B. -3
- C. 700
- D. 1.05
- E. 1

13.2 The Roller Coaster


A sign next to a roller coaster says, "You must be at least 60 inches tall to ride." Noah is happy to know that he is tall enough to ride.

- Noah is x inches tall. Which of the following can be true? Explain how you know.

- $x > 60$
- $x = 60$
- $x < 60$

- Noah's friend is 2 inches shorter than Noah. Can you tell if Noah's friend is tall enough to go on the ride? Explain or show your reasoning.
- List a possible height for Noah that would mean:
 - That his friend is tall enough to go on the ride.
 - That his friend is not tall enough for the ride.
- On the number line, show all the possible heights that Noah's friend could be.

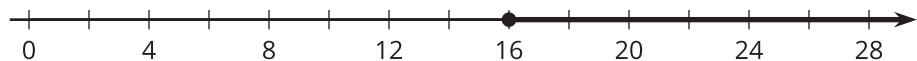
- Noah's friend is y inches tall. Use y and any of the symbols $<$, $=$, $>$ to express this height.

13.3 Is the Inequality True or False?

The table shows four inequalities and four values for x . Take turns with your partner to decide whether each value makes each inequality true, and complete the table with “true” or “false”.

- For each decision you make, explain to your partner how you know it’s true or false.
- For each decision that your partner makes, listen carefully to their explanation. If you disagree, discuss your thinking and work to reach an agreement.

x	0	100	-100	25
$x \leq 25$				
$100 < 4x$				
$-3x > -75$				
$10 \geq 35 - x$				


Are you ready for more?

Find an example of an inequality used in the real world and describe it using a number line.

Lesson 13 Summary

Inequalities can be used to describe a range of numbers. For example, in many places, people are eligible to get a driver's license when they are at least 16 years old. If h is the age of a person, then we can check if they are eligible to get a driver's license by checking if their age makes the inequality $h > 16$ (they are older than 16) or the equation $h = 16$ (they are 16) true. The symbol \geq , pronounced "greater than or equal to," combines these two cases and we can just check if $h \geq 16$ (their age is greater than or equal to 16).

The inequality $h \geq 16$ can be represented on a number line. The closed, or filled in, circle at 16 shows that 16 is a solution. The shading and arrow pointing right from 16 shows that all numbers greater than 16 are also solutions.

